求概率的题我只见过两种(做题太少),最后就是用高斯消元或者dp来求解的。
引理一:
结尾包含一个长度为L的指定串并(不含别的指定串)的概率为
1
2
L
\frac{1}{2^L}
2L1
证明:
很简单,只看结尾,结果有
2
n
2^n
2n种等可能情况,满足条件的只有一种所有概率就是
1
2
L
\frac{1}{2^L}
2L1
假设
x
0
x_0
x0为一个任意长度但不包含任意一个给定序列的概率,
x
i
x_i
xi表示i同学的胜率。
你想,如果我们想要一个没有包含容易一个的指定序列的字符串+任意一个指定字符串不就好了吗?
但是这存在一个问题,就是前面字符串的后缀+后面字符串的前缀刚好是一个指定序列,这就是导致每位同学胜率不同的原因,不然每个人都应该是
x
0
∗
1
2
m
x_0*\frac{1}{2^m}
x0∗2m1,所以我们应该要处理一下矛盾的情况。
我们容易 得到下面的方程:
x
i
=
1
2
m
x
0
−
∑
j
=
1
n
x
j
(
∑
k
=
1
m
−
[
i
=
j
]
[
p
r
e
f
i
x
(
i
,
k
)
=
s
u
f
f
i
x
(
j
,
k
)
]
1
2
m
−
k
)
x_i=\frac{1}{2^m}x_0-\sum_{j=1}^nx^j(\sum_{k=1}^{m-[i=j]}[prefix(i,k)=suffix(j,k)]\frac{1}{2^{m-k}})
xi=2m1x0−j=1∑nxj(k=1∑m−[i=j][prefix(i,k)=suffix(j,k)]2m−k1)
其中prefix代表长度为j的i串前缀,而suffix表示后缀。这个方程表示满足条件的情况=全部的情况-不满足条件的情况
判断的话就用哈希。
还有一个方程
∑
i
=
1
n
=
1
\sum_{i=1}^{n}=1
i=1∑n=1
剩下来的就是高斯消元的事啦。
时间O(N^3)
参考代码
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
typedef unsigned long long ULL;
const int N = 3e2 + 6;
const ULL seed = 255;
int n, m; char s[N][N];
long double mi[N], a[N][N], ans[N];
ULL Hash[N][N], seedi[N];
inline void Guass(long double a[N][N], int n) {
for (int i = 1; i <= n; i++) {
int p = i;
for (int j = i + 1; j <= n; j++)
if (fabs(a[j][i]) > fabs(a[p][i])) p = j;
if (p != i) swap(a[p], a[i]);
for (int j = i + 1; j <= n; j++) {
long double bili = a[j][i] / a[i][i];
for (int k = i; k <= n + 1; k++)
a[j][k] -= bili * a[i][k];
}
}
for (int i = n; i >= 1; i--) {
ans[i] = a[i][n + 1] / a[i][i];
for (int j = i - 1; j >= 1; j--)
a[j][n + 1] -= a[j][i] * ans[i];
}
}
int main() {
scanf("%d%d", &n, &m);
mi[0] = 1, seedi[0] = 1;
for (int i = 1; i <= m; i++) mi[i] = mi[i - 1] * 0.5;
for (int i = 1; i <= m; i++) seedi[i] = seedi[i - 1] * seed;
for (int i = 1; i <= n; i++) {
scanf("%s", s[i] + 1);
for (int j = 1; j <= m; j++) Hash[i][j] = Hash[i][j - 1] * seed + s[i][j];
}
for (int i = 1; i <= n; i++) a[i][n + 1] = -mi[m], a[i][i]++;
for (int i = 1; i <= n; i++) a[n + 1][i] = 1;
a[n + 1][n + 2] = 1;
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
for (int k = 1; k <= m - (i == j); k++)
if (Hash[i][k] == Hash[j][m] - Hash[j][m - k] * seedi[k])
a[i][j] += mi[m - k];
Guass(a, n + 1);
for (int i = 1; i <= n; i++) printf("%.10lf\n", (double)(ans[i]));
return 0;
}