loj2004[SDOI2017]硬币游戏

求概率的题我只见过两种(做题太少),最后就是用高斯消元或者dp来求解的。
引理一:
结尾包含一个长度为L的指定串并(不含别的指定串)的概率为 1 2 L \frac{1}{2^L} 2L1
证明:
很简单,只看结尾,结果有 2 n 2^n 2n种等可能情况,满足条件的只有一种所有概率就是 1 2 L \frac{1}{2^L} 2L1

假设 x 0 x_0 x0为一个任意长度但不包含任意一个给定序列的概率, x i x_i xi表示i同学的胜率。
你想,如果我们想要一个没有包含容易一个的指定序列的字符串+任意一个指定字符串不就好了吗?
但是这存在一个问题,就是前面字符串的后缀+后面字符串的前缀刚好是一个指定序列,这就是导致每位同学胜率不同的原因,不然每个人都应该是 x 0 ∗ 1 2 m x_0*\frac{1}{2^m} x02m1,所以我们应该要处理一下矛盾的情况。
我们容易 得到下面的方程:
x i = 1 2 m x 0 − ∑ j = 1 n x j ( ∑ k = 1 m − [ i = j ] [ p r e f i x ( i , k ) = s u f f i x ( j , k ) ] 1 2 m − k ) x_i=\frac{1}{2^m}x_0-\sum_{j=1}^nx^j(\sum_{k=1}^{m-[i=j]}[prefix(i,k)=suffix(j,k)]\frac{1}{2^{m-k}}) xi=2m1x0j=1nxj(k=1m[i=j][prefix(i,k)=suffix(j,k)]2mk1)
其中prefix代表长度为j的i串前缀,而suffix表示后缀。这个方程表示满足条件的情况=全部的情况-不满足条件的情况
判断的话就用哈希。
还有一个方程
∑ i = 1 n = 1 \sum_{i=1}^{n}=1 i=1n=1
剩下来的就是高斯消元的事啦。
时间O(N^3)
参考代码

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
typedef unsigned long long ULL;
const int N = 3e2 + 6;
const ULL seed = 255;
int n, m; char s[N][N];
long double mi[N], a[N][N], ans[N];
ULL Hash[N][N], seedi[N];
inline void Guass(long double a[N][N], int n) {
	for (int i = 1; i <= n; i++) {
		int p = i;
		for (int j = i + 1; j <= n; j++)
			if (fabs(a[j][i]) > fabs(a[p][i])) p = j;
		if (p != i) swap(a[p], a[i]);
		for (int j = i + 1; j <= n; j++) {
			long double bili = a[j][i] / a[i][i];
			for (int k = i; k <= n + 1; k++)
				a[j][k] -= bili * a[i][k];
		}
	}
	for (int i = n; i >= 1; i--) {
		ans[i] = a[i][n + 1] / a[i][i];
		for (int j = i - 1; j >= 1; j--)
			a[j][n + 1] -= a[j][i] * ans[i];
	}
}

int main() {
	scanf("%d%d", &n, &m);
	mi[0] = 1, seedi[0] = 1;
	for (int i = 1; i <= m; i++) mi[i] = mi[i - 1] * 0.5;
	for (int i = 1; i <= m; i++) seedi[i] = seedi[i - 1] * seed;
	for (int i = 1; i <= n; i++) {
		scanf("%s", s[i] + 1);
		for (int j = 1; j <= m; j++) Hash[i][j] = Hash[i][j - 1] * seed + s[i][j];
	}
	for (int i = 1; i <= n; i++) a[i][n + 1] = -mi[m], a[i][i]++;
	for (int i = 1; i <= n; i++) a[n + 1][i] = 1;
	a[n + 1][n + 2] = 1;
	for (int i = 1; i <= n; i++)
		for (int j = 1; j <= n; j++)
			for (int k = 1; k <= m - (i == j); k++)
				if (Hash[i][k] == Hash[j][m] - Hash[j][m - k] * seedi[k])
					a[i][j] += mi[m - k];
	Guass(a, n + 1);
	for (int i = 1; i <= n; i++) printf("%.10lf\n", (double)(ans[i]));
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值