题目描述
原题来自:USACO 2006 Jan. Gold
为了从 F 个草场中的一个走到另一个,贝茜和她的同伴们不得不路过一些她们讨厌的可怕的树。奶牛们已经厌倦了被迫走某一条路,所以她们想建一些新路,使每一对草场之间都会至少有两条相互分离的路径,这样她们就有多一些选择。
每对草场之间已经有至少一条路径,给出所有 R 条双向路的描述,每条路连接了两个不同的草场,请计算最少的新建道路的数量。
路径由若干道路首尾相连而成,两条路径相互分离,是指两条路径没有一条重合的道路,但是两条分离的路径上可以有一些相同的草场。
对于同一对草场之间,可能已经有两条不同的道路,你也可以在它们之间再建一条道路,作为另一条不同的道路。
输入格式
第一行输入两个整数 F 和 R;
接下来 R 行,每行输入两个整数,表示两个草场,它们之间有一条道路。
输出格式
输出最少需要新建的道路数目。
样例
样例输入
7 7
1 2
2 3
3 4
2 5
4 5
5 6
5 7
样例输出
2
样例解释
poj3177.png](https://i.loli.net/2018/07/25/5b5872405390b.png)
1 2 3
+---+---+
: | |
: | |
6 +---+---+ 4
/ 5 :
/ :
/ :
7 +·· ·· ··
图中虚线表示已有的道路,点线表示新建的两条道路。现在可以检验一些路径,比如:
草场 1 和草场 2:1→2和 1→6→5→2
草场 1 和草场 4:1→2→3→4和 1→6→5→4
草场 3 和草场 7:3→4→7 和 3→2→5→7
事实上,每一对草场之间都连接了两条分离的路径。
数据范围与提示
1≤F≤5000,1≤R≤10000。
这一题的意思就是要让一个无向图成为边双联通图至少需要添加多少条边
题目说保证每个点之间有边联通
我们首先把这个图进行Tarjan缩点,在此之后就可以把这一个图变成一颗树了
那么添加的边数就是(叶子节点的个数+1) / 2
原因就是只有一条边连向叶子节点叶子节点,所以我们可以把叶子节点连接起来,就花费这么多的边了
但是缩点的时候要记得每一条边只能搜一次,不然。。。。。。
代码
#include <cstdio>
#include <cstring>
#include <vector>
#include <iostream>
using namespace std ;
inline int read() {
int x = 0 , f = 0 ; char s = getchar() ;
while ( !isdigit( s ) ) f |= s=='-' , s = getchar() ;
while ( isdigit( s ) ) x = (x<<1) + (x<<3) + s - 48 , s = getchar() ;
return !f ? x : -x ;
}
const int N = 5e3 + 10 ;
struct edge {
int u , v , nxt ;
}e[N<<2] ; int cnt , last[N] ;
bool vis[N<<2] ;
inline void add ( int u , int v ) {
e[++cnt] = (edge){ u , v , last[u] } ;
last[u] = cnt ;
e[++cnt] = (edge){ v , u , last[v] } ;
last[v] = cnt ;
}
vector < int > vec ;
int bcc , belong[N] ;
int id , dfn[N] , low[N] ;
void Tarjan ( int u ) { //缩点
dfn[u] = low[u] = ++id ;
vec.push_back ( u ) ;
for ( int i = last[u] , v = e[i].v ; i != -1 ; i = e[i].nxt , v = e[i].v )
if ( vis[i^1] == 0 ) { //如果反向边没有走过(一条有向边只会被搜索一次,所以不用判断vis[i])
vis[i] = 1 ;
if ( !dfn[v] ) {
Tarjan ( v ) ;
low[u] = min ( low[u] , low[v] ) ;
}
else low[u] = min ( low[u] , dfn[v] ) ;
}
else vis[i] = 1 ;
if ( low[u] == dfn[u] ) {
bcc ++ ; int i ;
do {
i = vec.back() ;
vec.pop_back() ;
belong[i] = bcc ;
} while ( i != u ) ;
}
}
int into[N] ;
void statis() {
for ( int i = 0 ; i <= cnt ; i += (1<<1) ) //统计缩点以后入度为1的点
if ( belong[e[i].u] != belong[e[i].v] )
into[belong[e[i].u]] ++ , into[belong[e[i].v]] ++ ;
int ans = 1 ;
for ( int i = 1 ; i <= bcc ; i ++ )
if ( into[i] == 1 ) ans ++ ;
cout << (ans>>1) << endl ;
}
int n , m ;
int main() {
n = read() ; m = read() ;
cnt = -1 , memset ( last , -1 , sizeof( last ) ) ;
memset ( vis , 0 , sizeof ( vis ) ) ;
for ( int i = 1 ; i <= m ; i ++ ) {
int u = read() , v = read() ;
add ( u , v ) ;
}
Tarjan( 1 ) ;
statis() ; return 0 ;
}