题目描述
仓库管理员M最近一直很烦恼,因为他的上司给了他一个艰难的任务:让他尽快想出一种合理的方案,把公司的仓库整理好。
已知公司共有n个仓库和n种货物,由于公司进货时没能很好的归好类,使得大部分的仓库里面同时装有多种货物,这就给搬运工作人员搬运货物时带来了很多的麻烦。
仓库管理员M的任务就是设计一种合理的方案,把仓库里面的货物重新整理,把相同的货物放到同一个仓库,以便于日后的管理,在整理过程中肯定需要把某些货物从一个仓库搬运到另一个仓库,已知每一次搬运货物所付出的代价等于搬运该货物的重量。
编程任务:
请你帮助仓库管理员M设计搬运方案,使得把所有的货物归好类:使每种货物各自占用一个仓库,或者说每个仓库里只能放一种货物。同时要求搬运货物时所付出的所有的总的代价最小。
输入输出格式
输入格式:
第一行为n (1 <= n <= 150),仓库的数量。
以下为仓库货物的情况。第i+1行依次为第i个仓库中n种货物的数量x(0 <= x <= 100)。
输出格式:
把所有的货物按要求整理好所需的总的最小代价。
输入输出样例
输入样例#1:
4 62 41 86 94 73 58 11 12 69 93 89 88 81 40 69 13
输出样例#1:
650
说明
样例说明:
方案是:第1种货物放到仓库2中;第2种货物放到仓库3中;
第3种货物放到仓库4中;第4种货物放到仓库1中
首先简化题目,求出cos[i][j]货物i放到j仓库所需的值
然后发现这其实是一道最小费用最大流的题目
然后就AC吧(好短的解释)
参考代码
// luogu-judger-enable-o2
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std ;
namespace IO {
inline int read() {
int x = 0 , f = 0 ; char s = getchar() ;
while ( !isdigit(s) ) f |= s=='-' , s = getchar() ;
while ( isdigit(s) ) x = (x<<1)+(x<<3)+(s-48) , s = getchar() ;
return !f ? x : -x ;
}
int ss , aa[21] ;
inline void write ( int x ) {
if ( !x ) putchar('0') ; ss = 0 ;
if ( x < 0 ) putchar('-') , x = -x ;
while ( x ) aa[++ss] = x%10 , x /= 10 ;
for ( int i = ss ; i > 0 ; i -- ) putchar(aa[i]+'0') ;
puts ( "" ) ;
}
}
using namespace IO ;
const int N = 315 ;
int n , a[N][N] ;
int cos[N][N] , s[N] ;
namespace MAP {
struct edge {
int v , w , k , nxt ;
} e[N*N] ; int tot , last[N] , cur[N] ;
inline void add ( int u , int v , int w , int k ) {
e[++tot] = (edge){ v , w , k , last[u] } ;
last[u] = tot ;
e[++tot] = (edge){ u , 0 , -k , last[v] } ;
last[v] = tot ;
}
}
using namespace MAP ;
bool vis[N] ; int dis[N] ;
int S , T ; int cost = 0 ;
inline bool SPFA() {
memset ( vis , 0 , sizeof(vis) ) ; vis[T] = 1 ;
memset ( dis , -1 , sizeof(dis) ) ; dis[T] = 0 ;
queue<int> q ; q.push ( T ) ;
while ( !q.empty() ) {
int u = q.front() ; q.pop () ; vis[u] = 0 ;
for ( int i = last[u] ; i != -1 ; i = e[i].nxt ) {
int v = e[i].v ;
if ( e[i^1].w && ( dis[v] > dis[u]-e[i].k || dis[v] == -1 ) ) {
dis[v] = dis[u] - e[i].k ;
if ( !vis[v] ) vis[v] = 1 , q.push ( v ) ;
}
}
}
return dis[S] != -1 ;
}
int dfs ( int u , int f ) {
vis[u] = 1 ;
if ( u == T ) return f ;
int ans = 0 , t = 0 ;
for ( int i = cur[u] ; i != -1 ; i = e[i].nxt ) {
int v = e[i].v ;
if ( !vis[v] && e[i].w && dis[u]-e[i].k == dis[v] ) {
ans += ( t=dfs( v , min( e[i].w , f-ans )) ) ;
e[i].w -= t , e[i^1].w += t ;
cost += t*e[i].k ; cur[u] = i ;
if ( ans == f ) break ;
}
}
vis[u] = 0 ; return ans ;
}
int main() {
n = read() ;
for ( int i = 1 ; i <= n ; i ++ )
for ( int j = 1 ; j <= n ; j ++ )
a[i][j] = read() , s[j] += a[i][j] ;
for ( int i = 1 ; i <= n ; i ++ )
for ( int j = 1 ; j <= n ; j ++ )
cos[i][j] = s[i] - a[j][i] ;
S = 2*n+1 , T = S + 1 ;
tot = -1 , memset ( last , -1 , sizeof(last) ) ;
for ( int i = 1 ; i <= n ; i ++ )
add ( S , i , 1 , 0 ) , add ( i+n , T , 1 , 0 ) ;
for ( int i = 1 ; i <= n ; i ++ )
for ( int j = 1 ; j <= n ; j ++ )
add ( i , j+n , 1 , cos[i][j] ) ;
int ans = 0 ;
while ( SPFA() ) {
memcpy ( cur , last , sizeof(cur) ) ;
ans += dfs ( S , 999999999 ) ;
}
write ( cost ) ; return 0 ;
}