luogu P5218 无聊的水题 II

背景:

YH \text{YH} YH将它出成了一道模拟赛题,写了个 Θ ( n log ⁡ n ) \Theta(n \log n) Θ(nlogn)的,主要是没有发现我的容斥系数为 μ \mu μ,蠢了,只有 50pts \text{50pts} 50pts,还是最高???

题目传送门:

https://www.luogu.org/problem/P5218

题意:

n n n个数 [ 1 , n ] [1,n] [1,n],每一次可以选任意的数,选出的数每一个数都可以乘上一个整数。问能表示出 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)的选法的方案数。

思路:

容易想到合法的情况一定能表示出 1 1 1,因此形如将 a x + b y + c z + . . . = 1 ax+by+cz+...=1 ax+by+cz+...=1的不等式解出来( x , y , z x,y,z x,y,z为你选进来的数, a , b , c a,b,c a,b,c表示你分别乘上的数),那么有裴蜀定理可知 gcd ⁡ ( x , y , z , . . . ) = 1 \gcd(x,y,z,...)=1 gcd(x,y,z,...)=1
那么问题转化成选出任意多的数,使它们的 gcd ⁡ = 1 \gcd=1 gcd=1
f i f_i fi表示 gcd ⁡ \gcd gcd i i i时的方案数, F i F_i Fi表示选出的数都是 i i i的倍数的方案数。
考虑每一个数选或不选,一共 ⌊ n i ⌋ \lfloor\frac{n}{i}\rfloor in个数,去掉全部都不选的 1 1 1种情况,答案即为 2 ⌊ n i ⌋ − 1 2^{\lfloor\frac{n}{i}\rfloor}-1 2in1
枚举 gcd ⁡ \gcd gcd,考虑容斥,显然有 f gcd ⁡ = ∑ gcd ⁡ ∣ d , d ≤ n μ d F d f_{\gcd}=\sum_{\gcd|d,d≤n}\mu_dF_d fgcd=gcdd,dnμdFd
证明就是一个容斥,考虑你当前选出的数可能有更大的 gcd ⁡ \gcd gcd,被计算多次,容斥一下就 OK \text{OK} OK了。
a n s = f 1 = ∑ i = 1 n μ i ( 2 ⌊ n i ⌋ − 1 ) ans=f_1=\sum_{i=1}^{n}\mu_i(2^{\lfloor\frac{n}{i}\rfloor}-1) ans=f1=i=1nμi(2in1)

发现 ⌊ n i ⌋ \lfloor\frac{n}{i}\rfloor in可以整除分块,杜教筛 μ \mu μ,整除分块即可。

原谅我水题不能切,题解还写得长,其实是我菜。

代码:

#include<cstdio>
#include<cstring>
#include<map>
#include<algorithm>
#define LL long long
#define mod 1000000007
using namespace std;
map<LL,int> MAP;
	int prime[10000010],mu[10000010],sum_mu[10000010];
	bool bz[10000010];
	LL n;
void init(int ma)
{
	int t=0;
	bz[0]=bz[1]=true;
	mu[1]=1;
	for(int i=2;i<=ma;i++)
	{
		if(!bz[i]) prime[++t]=i,mu[i]=-1;
		for(int j=1;j<=t&&i*prime[j]<=ma;j++)
		{
			bz[i*prime[j]]=true;
			if(!(i%prime[j]))
			{
				mu[i*prime[j]]=0;
				break;
			}
			mu[i*prime[j]]=-mu[i];
		}
	}
	for(int i=1;i<=ma;i++)
		sum_mu[i]=(sum_mu[i-1]+mu[i]+mod)%mod;
}
int ksm(int x,LL k)
{
	int tot=1;
	for(;k;k>>=1)
	{
		if(k&1) tot=(LL)tot*x%mod;
		x=(LL)x*x%mod;
	}
	return tot;
}
int calc_mu(LL x)
{
	if(x<=(int)1e7) return sum_mu[x];
	if(MAP[x]) return MAP[x];
	int ans=1;
	for(LL l=2,r;l<=x;l=r+1)
	{
		r=x/(x/l);
		ans=((LL)ans-((LL)r-l+1)*calc_mu(x/l)%mod+mod)%mod;
	}
	return MAP[x]=ans;
}
int work(LL n)
{
	int ans=0;
	for(LL l=1,r;l<=n;l=r+1)
	{
		r=n/(n/l);
		ans=((LL)ans+(((LL)calc_mu(r)-calc_mu(l-1)+mod)%mod)*(((LL)ksm(2,n/l)-1+mod)%mod)%mod)%mod;
	}
	return ans;
}
int main()
{
	scanf("%lld",&n);
	init((int)min((LL)(1e7),n));
	printf("%d",work(n));
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值