luogu P2260 [清华集训2012]模积和 & P2834 能力测验

背景:

又来刷水题了。

题目传送门:

https://www.luogu.org/problem/P2260
https://www.luogu.org/problem/P2834

题意:

∑ i = 1 n ∑ j = 1 , j ≠ i m ( n m o d    i ) ( m m o d    j ) \sum_{i=1}^{n}\sum_{j=1,j≠i}^{m}(n\mod i)(m \mod j) i=1nj=1,j̸=im(nmodi)(mmodj)

思路:

∑ i = 1 n ∑ j = 1 , j ≠ i m ( n m o d    i ) ( m o d    j ) \sum_{i=1}^{n}\sum_{j=1,j≠i}^{m}(n\mod i)(\mod j) i=1nj=1,j̸=im(nmodi)(modj)

= ∑ i = 1 n ∑ j = 1 m ( n m o d    i ) ( m m o d    j ) − ∑ i = 1 min ⁡ ( n , m ) ( n m o d    i ) ( m m o d    i ) =\sum_{i=1}^{n}\sum_{j=1}^{m}(n\mod i)(m\mod j)-\sum_{i=1}^{\min(n,m)}(n\mod i)(m\mod i) =i=1nj=1m(nmodi)(mmodj)i=1min(n,m)(nmodi)(mmodi)

= ∑ i = 1 n ( n m o d    i ) ∑ j = 1 m ( m m o d    j ) − ∑ i = 1 min ⁡ ( n , m ) ( n m o d    i ) ( m m o d    i ) =\sum_{i=1}^{n}(n\mod i)\sum_{j=1}^{m}(m\mod j)-\sum_{i=1}^{\min(n,m)}(n\mod i)(m\mod i) =i=1n(nmodi)j=1m(mmodj)i=1min(n,m)(nmodi)(mmodi)

我们定义:
f n = ∑ i = 1 n ( n m o d    i ) f_n=\sum_{i=1}^{n}(n\mod i) fn=i=1n(nmodi)
f m = ∑ i = 1 m ( m m o d    i ) f_m=\sum_{i=1}^{m}(m\mod i) fm=i=1m(mmodi)
F min ⁡ ( n , m ) = ∑ i = 1 min ⁡ ( n , m ) ( n m o d    i ) ( m m o d    i ) F_{\min(n,m)}=\sum_{i=1}^{\min(n,m)}(n\mod i)(m\mod i) Fmin(n,m)=i=1min(n,m)(nmodi)(mmodi),则:
a n s = f n f m − F min ⁡ ( n , m ) ans=f_nf_m-F_{\min(n,m)} ans=fnfmFmin(n,m)
考虑:
f n = ∑ i = 1 n ( n m o d    i ) = ∑ i = 1 n n − ⌊ n i ⌋ i = n 2 − ∑ i = 1 n ⌊ n i ⌋ i \begin{aligned}f_{n}&=\sum_{i=1}^{n}(n\mod i)\\ &=\sum_{i=1}^{n}n-\lfloor \frac{n}{i}\rfloor i\\ &=n^2-\sum_{i=1}^{n}\lfloor \frac{n}{i}\rfloor i\end{aligned} fn=i=1n(nmodi)=i=1nnini=n2i=1nini

就可以整除分块。

考虑:
F min ⁡ ( n , m ) = ∑ i = 1 min ⁡ ( n , m ) ( n m o d    i ) ( m m o d    i ) = ∑ i = 1 min ⁡ ( n , m ) ( n − ⌊ n i ⌋ i ) ( m − ⌊ m i ⌋ i ) = ∑ i = 1 min ⁡ ( n , m ) n m − i ( m ⌊ n i ⌋ + n ⌊ m i ⌋ ) + i 2 ⌊ n i ⌋ ⌊ m i ⌋ = n m ⋅ min ⁡ ( n , m ) ⋅ ∑ i = 1 min ⁡ ( n , m ) − i ( m ⌊ n i ⌋ + n ⌊ m i ⌋ ) + i 2 ⌊ n i ⌋ ⌊ m i ⌋ \begin{aligned}F_{\min(n,m)}&=\sum_{i=1}^{\min(n,m)}(n\mod i)(m\mod i)\\ &=\sum_{i=1}^{\min(n,m)}(n-\lfloor \frac{n}{i}\rfloor i)(m-\lfloor \frac{m}{i}\rfloor i)\\ &=\sum_{i=1}^{\min(n,m)}nm-i(m\lfloor \frac{n}{i}\rfloor+n\lfloor \frac{m}{i}\rfloor)+i^2\lfloor \frac{n}{i}\rfloor\lfloor \frac{m}{i}\rfloor\\ &=nm\cdot \min(n,m)\cdot \sum_{i=1}^{\min(n,m)}-i(m\lfloor \frac{n}{i}\rfloor+n\lfloor \frac{m}{i}\rfloor)+i^2\lfloor \frac{n}{i}\rfloor\lfloor \frac{m}{i}\rfloor\end{aligned} Fmin(n,m)=i=1min(n,m)(nmodi)(mmodi)=i=1min(n,m)(nini)(mimi)=i=1min(n,m)nmi(min+nim)+i2inim=nmmin(n,m)i=1min(n,m)i(min+nim)+i2inim

就可以整除分块了。
∑ i = 1 n i 2 = ( n ) ( n + 1 ) ( 2 n + 1 ) 6 \sum_{i=1}^{n}i^2=\frac{(n)(n+1)(2n+1)}{6} i=1ni2=6(n)(n+1)(2n+1),而 m o d    ∉ p r i m e \mod ∉prime mod/prime,因此不能费马小定理求逆元,我就离线暴力求了,你可以扩欧。

P2260 \text{P2260} P2260代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
#define mod 19940417
#define inv6 3323403
using namespace std;
	LL n,m;
LL work1(LL x,LL y)
{
	return ((x+y)*(y-x+1)/2)%mod;
}
LL work_pow(LL x)
{
	return x*(x+1)%mod*((2ll*x+1)%mod)%mod*inv6%mod;
}
LL work2(LL x,LL y)
{
	return (work_pow(y)-work_pow(x-1)+mod)%mod;
}
LL calc(LL n)
{
	LL sum=0;
	for(LL l=1,r;l<=n;l=r+1)
	{
		r=n/(n/l);
		sum=(sum+(n/l)*work1(l,r)%mod)%mod;
	}
	return (n*n%mod-sum+mod)%mod;
}
LL Calc(LL n,LL m)
{
	LL sum=0;
	for(int l=1,r;l<=min(n,m);l=r+1)
	{
		r=min(n/(n/l),m/(m/l));
		sum=(sum-work1(l,r)*((m*(n/l)+n*(m/l))%mod)%mod+work2(l,r)*(n/l)%mod*(m/l)%mod+mod)%mod;
	}
	return (n*m%mod*min(n,m)%mod+sum)%mod;
}
int main()
{
	scanf("%lld %lld",&n,&m);
	printf("%lld",(calc(n)*calc(m)%mod-Calc(n,m)+mod)%mod);
}

P2834 \text{P2834} P2834代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
#define mod 1000000007
#define inv6 166666668
using namespace std;
	LL n,m;
LL work1(LL x,LL y)
{
	return ((x+y)*(y-x+1)/2)%mod;
}
LL work_pow(LL x)
{
	return x*(x+1)%mod*((2ll*x+1)%mod)%mod*inv6%mod;
}
LL work2(LL x,LL y)
{
	return (work_pow(y)-work_pow(x-1)+mod)%mod;
}
LL calc(LL n)
{
	LL sum=0;
	for(LL l=1,r;l<=n;l=r+1)
	{
		r=n/(n/l);
		sum=(sum+(n/l)*work1(l,r)%mod)%mod;
	}
	return (n*n%mod-sum+mod)%mod;
}
LL Calc(LL n,LL m)
{
	LL sum=0;
	for(int l=1,r;l<=min(n,m);l=r+1)
	{
		r=min(n/(n/l),m/(m/l));
		sum=(sum-work1(l,r)*((m*(n/l)+n*(m/l))%mod)%mod+work2(l,r)*(n/l)%mod*(m/l)%mod+mod)%mod;
	}
	return (n*m%mod*min(n,m)%mod+sum)%mod;
}
int main()
{
	scanf("%lld %lld",&n,&m);
	printf("%lld",(calc(n)*calc(m)%mod-Calc(n,m)+mod)%mod);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值