题目传送门:https://www.luogu.org/problemnew/show/P1073
题意:
有n个点,m条边(注意:双向边也算一条边),这些边可以是单向的,也可以是双向的。现在每一个点都有对应的价值的商品,你需要从1号点走到n号点,当然,你可以重复经过一些点,或一些边,求你能通过一次交易获得的最大价值,交易是指你在某一个点买下一件商品,到某一个点再卖出去,赚取差价。如果不能盈利,输出0。
思路:
看到题,就想到了强连通,因为在一个强连同分量内,我只需要求这个分量的所有点的最小和最大价值即可,既考虑买和卖的最优价值。最后在弄个dp就可以了。
经hy的提醒,不能直接上dp,要先跑一边拓扑排序,求出访问的先后顺序(因为缩完点后成了有向图,访问点有先后顺序,不能先卖在买)。而你需要正向和反向各跑一边,求出这个点的最大和最小。
是不是太麻烦了(跑完强联通,再跑拓扑,还要跑dp),还是我太笨了。
于是,在这个思路上,我就想到了是不是可以用拓扑排序的方法跑spfa,求出这个点的最大和最小,就不用缩点了。
这道题有坑了我好久(没有建两次边)。
题意:
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
queue<int> f;
int n,m,len1=0,len2=0,ans=0;
struct node{int x,y,next;} a[1000010],b[1000010];
int d[100010],last1[100010],last2[100010],ma[100010],mi[100010];
bool bz[100010];
void ins(int x,int y)
{
a[++len1].x=x;a[len1].y=y;a[len1].next=last1[x];last1[x]=len1;
b[++len2].x=y;b[len2].y=x;b[len2].next=last2[y];last2[y]=len2;
}
int spfa_1()
{
memset(bz,true,sizeof(bz));
bz[1]=false;
memset(mi,63,sizeof(mi));
mi[1]=d[1];
f.push(1);
while(!f.empty())
{
int x=f.front();
bz[x]=true;
for(int i=last1[x];i;i=a[i].next)
{
int y=a[i].y;
if(mi[y]>min(mi[x],d[y]))
{
mi[y]=min(mi[x],d[y]);
if(bz[y])
{
bz[y]=false;
f.push(y);
}
}
}
f.pop();
}
}
int spfa_2()
{
memset(bz,true,sizeof(bz));
bz[n]=false;
memset(ma,0,sizeof(ma));
ma[n]=d[n];
f.push(n);
while(!f.empty())
{
int x=f.front();
bz[x]=true;
for(int i=last2[x];i;i=b[i].next)
{
int y=b[i].y;
if(ma[y]<max(ma[x],d[y]))
{
ma[y]=max(ma[x],d[y]);
if(bz[y])
{
bz[y]=false;
f.push(y);
}
}
}
f.pop();
}
}
int main()
{
int x,y,z;
scanf("%d %d",&n,&m);
for(int i=1;i<=n;i++)
scanf("%d",&d[i]);
for(int i=1;i<=m;i++)
{
scanf("%d %d %d",&x,&y,&z);
ins(x,y);
if(z==2) ins(y,x);
}
spfa_1();
spfa_2();
for(int i=1;i<=n;i++)
ans=max(ans,ma[i]-mi[i]);
printf("%d",ans);
}