斜率优化学习笔记 & hdu P3507

背景:

我连这都不会…

题目传送门:

(这是一道例题)http://acm.hdu.edu.cn/showproblem.php?pid=3507

题意:

给定 n , m n,m n,m,接下来有 n n n个数 a i a_i ai,表示每一个单词的权值。现在你需要将这些单词分行,每一行的权值的计算公式是: ( ∑ i = 1 k a i ) 2 + m (\sum_{i=1}^{k}a_i)^2+m (i=1kai)2+m,现在求最小的权值和。

思路:

显然我们能想到常规做法。
f i f_i fi表示从第 1 1 1个单词到第 i i i个单词的权值和的最小值。
s u m k = ∑ i = 1 k a i sum_k=\sum_{i=1}^{k}a_i sumk=i=1kai
显然得到转移方程: f i = min ⁡ j = 1 i { f j + ( s u m i − s u m j ) 2 } f_i=\min_{j=1}^{i}\{f_j+(sum_{i}-sum_j)^2\} fi=minj=1i{fj+(sumisumj)2}
时间复杂度: Θ ( n 2 ) \Theta(n^2) Θ(n2)

可是我们过不了怎么办?
考虑 i i i j , k j,k j,k转移过来的情况,且从 j j j转移更优, j > k j>k j>k
可以得到不等式:
f j + ( s u m i − s u m j ) 2 &lt; f k + ( s u m i − s u m k ) 2 f_j+(sum_i-sum_j)^2&lt;f_k+(sum_i-sum_k)^2 fj+(sumisumj)2<fk+(sumisumk)2

展开括号,得:
f j + s u m i 2 + s u m j 2 − 2 s u m i s u m j &lt; f k + s u m i 2 + s u m k 2 − 2 s u m i s u m k f_j+sum_i^2+sum_j^2-2sum_isum_j&lt;f_k+sum_i^2+sum_k^2-2sum_isum_k fj+sumi2+sumj22sumisumj<fk+sumi2+sumk22sumisumk

消去同类项,得:
f j + s u m j 2 − 2 s u m i s u m j &lt; f k + s u m k 2 − 2 s u m i s u m k f_j+sum_j^2-2sum_isum_j&lt;f_k+sum_k^2-2sum_isum_k fj+sumj22sumisumj<fk+sumk22sumisumk

再移项,得:
f j − f k + s u m j 2 − s u m k 2 &lt; + 2 s u m i s u m j − 2 s u m i s u m k f_j-f_k+sum_j^2-sum_k^2&lt;+2sum_isum_j-2sum_isum_k fjfk+sumj2sumk2<+2sumisumj2sumisumk

提取同类项,得:
f j − f k + s u m j 2 − s u m k 2 &lt; 2 s u m i ( s u m j − s u m k ) f_j-f_k+sum_j^2-sum_k^2&lt;2sum_i(sum_j-sum_k) fjfk+sumj2sumk2<2sumi(sumjsumk)

再移项,得:
f j − f k + s u m j 2 − s u m k 2 s u m j − s u m k &lt; 2 s u m i + 1 \frac{f_j-f_k+sum_j^2-sum_k^2}{sum_j-sum_k}&lt;2sum_{i+1} sumjsumkfjfk+sumj2sumk2<2sumi+1

T i = f i + s u m i 2 T_i=f_i+sum_i^2 Ti=fi+sumi2,得:
T j − T k s u m j − s u m k &lt; 2 s u m i + 1 \frac{T_j-T_k}{sum_j-sum_k}&lt;2sum_{i+1} sumjsumkTjTk<2sumi+1

结论:也就是说若存在 j &gt; k j&gt;k j>k T j − T k s u m j − s u m k &lt; 2 s u m i \frac{T_j-T_k}{sum_j-sum_k}&lt;2sum_i sumjsumkTjTk<2sumi,那么从 j j j转移更优。

p s : ps: ps:联想一下数学课本中的 k = y 2 − y 1 x 2 − x 1 k=\frac{y_2-y_1}{x_2-x_1} k=x2x1y2y1,发现左边的式子好像斜率啊。斜率优化就是这么来的。

那么有什么用呢?
在这里插入图片描述
因为 T T T是由 f f f s u m sum sum得到的, s u m sum sum是固定的,所以我们求完了 f f f,就可以得到 T T T
如图,从我们的斜率推导中我们可以以 s u m sum sum作为 x x x轴, T T T作为 y y y轴建立坐标系,对应的点代表 f f f的值。
我们在求解 f n o w f_{now} fnow时,假设可选 i , j , k i,j,k i,j,k三个点转移,且如上图所示。
由于 k k j &gt; k j i k_{kj}&gt;k_{ji} kkj>kji,所以 T j − T k s u m j − s u m k &gt; T i − T j s u m i − s u m j \frac{T_j-T_k}{sum_j-sum_k}&gt;\frac{T_i-T_j}{sum_i-sum_j} sumjsumkTjTk>sumisumjTiTj
由上面的结论可知两边的式子要与 2 s u m n o w 2sum_{now} 2sumnow比较。
就存在三种可能:
[ 1 ] : [1]: [1]:
T j − T k s u m j − s u m k &gt; T i − T j s u m i − s u m j &gt; 2 s u m n o w \frac{T_j-T_k}{sum_j-sum_k}&gt;\frac{T_i-T_j}{sum_i-sum_j}&gt;2sum_{now} sumjsumkTjTk>sumisumjTiTj>2sumnow

由上面的结论可知此时 j j j i i i优,但 k k k j j j优,所以选择 k k k转移。

[ 2 ] : [2]: [2]:
T j − T k s u m j − s u m k &gt; 2 s u m n o w &gt; T i − T j s u m i − s u m j \frac{T_j-T_k}{sum_j-sum_k}&gt;2sum_{now}&gt;\frac{T_i-T_j}{sum_i-sum_j} sumjsumkTjTk>2sumnow>sumisumjTiTj
由上面的结论可知此时 k k k j j j优, i i i j j j优,所以选择 i i i k k k转移。

[ 3 ] : [3]: [3]:
2 s u m n o w &gt; T j − T k s u m j − s u m k &gt; T i − T j s u m i − s u m j 2sum_{now}&gt;\frac{T_j-T_k}{sum_j-sum_k}&gt;\frac{T_i-T_j}{sum_i-sum_j} 2sumnow>sumjsumkTjTk>sumisumjTiTj
由上面的结论可知此时 i i i j j j优, j j j k k k优,所以选择 i i i转移。


综上所述,我们一定不会选择从 j j j转移。


我们维护一个这样的类似凸包且斜率单调递增的东西:
在这里插入图片描述
假设 k j i &gt; 2 s u m n o w k_{ji}&gt;2sum_{now} kji>2sumnow k k j &lt; 2 s u m n o w k_{kj}&lt;2sum_{now} kkj<2sumnow,我们可以从上面的结论得出 j j j点比所有比 k k k小的点都优,比所有比 i i i大的也优。所以我们二分查找斜率比 2 s u m n o w 2sum_{now} 2sumnow小的编号最大的点,就是最优的转移点。由于 s u m sum sum也有单调性,我们直接维护一个单调队列就可以了。
维护时,若队列前面的点不满足结论,则删掉;若后面的点不满足斜率单调递增,则删掉。

总结:

敲黑板。
总的来说,首先根据题意列出 d p dp dp方程,找出其中有单调性的元素,根据状态列出斜率方程(不等式),判断是上凸壳还是下凸壳,相应的用单调队列等方式解决即可。
我还是做了一些题,大家可以在我的标签中搜索,欢迎指出错误。

代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
using namespace std;
	int n,m;
	LL a[1000010],sum[1000010],f[1000010];
	int que[1000010];
LL calc1(int x,int y)
{
	return sum[y]-sum[x];
}
LL calc2(int x,int y)
{
	return (f[y]+sum[y]*sum[y])-(f[x]+sum[x]*sum[x]);
}
int main()
{
	while(scanf("%d %d",&n,&m)!=EOF)
	{
		f[0]=sum[0]=0;
		for(int i=1;i<=n;i++)
		{
			scanf("%lld",&a[i]);
			sum[i]=sum[i-1]+a[i];
		}
		int head=1,tail=1;
		que[1]=0;
		for(int i=1;i<=n;i++)
		{
			while(head<tail&&calc2(que[head],que[head+1])<=(LL)2*sum[i]*calc1(que[head],que[head+1])) head++;
			/*原来形如calc2(x,y)/calc1(x,y)<=2*sum[i],移项(使得没有小数计算),得到上面的式子*/
			f[i]=f[que[head]]+calc1(que[head],i)*calc1(que[head],i)+m;
			while(head<tail&&calc2(que[tail],i)*calc1(que[tail-1],que[tail])<=calc2(que[tail-1],que[tail])*calc1(que[tail],i)) tail--;
			/*原来形如calc2(x1,y1)/calc2(x1,y1)<=calc2(x2,y2)*calc1(x2,y2)/,移项(使得没有小数计算),得到上面的式子*/ 
			que[++tail]=i;
		}
		printf("%lld\n",f[n]);
	}
}
  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值