luogu P4072 [SDOI2016]征途

背景:

h e h e . . . hehe... hehe...

题目传送门:

https://www.luogu.org/problemnew/show/P4072

题意:

n n n个数 a i a_i ai,分成 m m m段,使方差( v v v)尽可能小,求 v ∗ m 2 v*m^2 vm2

思路:

推公式吧。
假设每一段的和为 x 1 , x 2 , . . . , x m x_1,x_2,...,x_m x1,x2,...,xm
s u m k = ∑ i = 1 k a i sum_k=\sum_{i=1}^ka_i sumk=i=1kai
x = ∑ i = 1 m x i m x=\frac{\sum_{i=1}^{m}x_i}{m} x=mi=1mxi则有:
v = ∑ i = 1 m ( x i − x ) 2 m v=\frac{\sum_{i=1}^{m}(x_i-x)^2}{m} v=mi=1m(xix)2
所以有: v = ∑ i = 1 m ( x i − x ) 2 m v=\frac{\sum_{i=1}^{m}(x_i-x)^2}{m} v=mi=1m(xix)2

我们可以知道 x = ∑ i = 1 m x i m = ∑ i = 1 n a i m x=\frac{\sum_{i=1}^{m}x_i}{m}=\frac{\sum_{i=1}^na_i}{m} x=mi=1mxi=mi=1nai,所以有:

∑ i = 1 m ( x i − x ) 2 m \frac{\sum_{i=1}^{m}(x_i-x)^2}{m} mi=1m(xix)2
= ∑ i = 1 m ( x i − ∑ i = 1 n a i m ) 2 m =\frac{\sum_{i=1}^{m}(x_i- \frac{\sum_{i=1}^na_i}{m})^2}{m} =mi=1m(ximi=1nai)2
= ∑ i = 1 m ( x i − s u m n m ) 2 m =\frac{\sum_{i=1}^{m}(x_i-\frac{sum_n}{m})^2}{m} =mi=1m(ximsumn)2
= ∑ i = 1 m ( x i 2 − 2 x i s u m n m + s u m n 2 m 2 ) m =\frac{\sum_{i=1}^{m}(x_i^2-2x_i\frac{sum_n}{m}+\frac{sum_n^2}{m^2})}{m} =mi=1m(xi22ximsumn+m2sumn2)
= ∑ i = 1 m ( x i 2 ) − ∑ i = 1 m ( 2 x i s u m n m ) + ∑ i = 1 m ( s u m n 2 m 2 ) ) m =\frac{\sum_{i=1}^{m}(x_i^2)-\sum_{i=1}^{m}(2x_i\frac{sum_n}{m})+\sum_{i=1}^{m}(\frac{sum_n^2}{m^2}))}{m} =mi=1m(xi2)i=1m(2ximsumn)+i=1m(m2sumn2))
= ∑ i = 1 m x i 2 m − ∑ i = 1 m 2 x i s u m n m m + ∑ i = 1 m s u m n 2 m 2 m =\frac{\sum_{i=1}^{m}x_i^2}{m}-\frac{\sum_{i=1}^{m}2x_i\frac{sum_n}{m}}{m}+\frac{\sum_{i=1}^{m}\frac{sum_n^2}{m^2}}{m} =mi=1mxi2mi=1m2ximsumn+mi=1mm2sumn2
= ∑ i = 1 m x i 2 m − 2 s u m n ∑ i = 1 m x i m 2 + ∑ i = 1 m s u m n 2 m 3 =\frac{\sum_{i=1}^{m}x_i^2}{m}-\frac{2sum_n\sum_{i=1}^{m}x_i}{m^2}+\frac{\sum_{i=1}^{m}sum_n^2}{m^3} =mi=1mxi2m22sumni=1mxi+m3i=1msumn2
= ∑ i = 1 m x i 2 m − 2 s u m n 2 m 2 + m ∗ s u m n 2 m 3 =\frac{\sum_{i=1}^{m}x_i^2}{m}-\frac{2sum_n^2}{m^2}+\frac{m*sum_n^2}{m^3} =mi=1mxi2m22sumn2+m3msumn2
= ∑ i = 1 m x i 2 m − 2 s u m n 2 m 2 + s u m n 2 m 2 =\frac{\sum_{i=1}^{m}x_i^2}{m}-\frac{2sum_n^2}{m^2}+\frac{sum_n^2}{m^2} =mi=1mxi2m22sumn2+m2sumn2
= ∑ i = 1 m x i 2 m − s u m n 2 m 2 =\frac{\sum_{i=1}^{m}x_i^2}{m}-\frac{sum_n^2}{m^2} =mi=1mxi2m2sumn2
由于只有 ∑ i = 1 m x i 2 \sum_{i=1}^{m}x_i^2 i=1mxi2是不定值,所以让其最小即可。

容易想到常规做法:设 f i , l f_{i,l} fi,l表示前 i i i个数用 l l l次来选的最小值。
显然 f i , l = min ⁡ j = 1 i − 1 f j , l − 1 + ( s u m i − s u m j ) 2 f_{i,l}=\min_{j=1}^{i-1}f_{j,l-1}+(sum_i-sum_j)^2 fi,l=minj=1i1fj,l1+(sumisumj)2
则斜率方程为: f j , l − 1 − f k , l − 1 + s u m j 2 − s u m k 2 s u m j − s u m k &lt; 2 s u m i \frac{f_{j,l-1}-f_{k,l-1}+sum_j^2-sum_k^2}{sum_j-sum_k}&lt;2sum_i sumjsumkfj,l1fk,l1+sumj2sumk2<2sumi

最后套回去即可。

代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
using namespace std;
	int n,m;
	LL a[3010],sum[3010],f[3010][3010];
	int que[3010];
LL calc1(int x,int y)
{
	return sum[y]-sum[x];
}
LL calc2(int x,int y,int z)
{
	return (f[y][z-1]+sum[y]*sum[y])-(f[x][z-1]+sum[x]*sum[x]);
}
double calc(int x,int y,int z)
{
	return (double)(calc2(x,y,z))/(double)(calc1(x,y));
}
int main()
{
	scanf("%d %d",&n,&m);
	for(int i=1;i<=n;i++)
	{
		scanf("%lld",&a[i]);
		sum[i]=sum[i-1]+a[i];
	}
	for(int i=1;i<=n;i++)
		f[i][1]=sum[i]*sum[i];
	for(int l=2;l<=m;l++)
	{
		int head=1,tail=1;
		que[1]=0;
		for(int i=1;i<=n;i++)
		{
			while(head<tail&&calc(que[head],que[head+1],l)<=(double)2*sum[i]) head++;
			f[i][l]=f[que[head]][l-1]+calc1(que[head],i)*calc1(que[head],i);
			while(head<tail&&calc(que[tail],i,l)<=calc(que[tail-1],que[tail],l)) tail--;
			que[++tail]=i;
		}
	}
	printf("%lld",f[n][m]*m-sum[n]*sum[n]);
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值