luogu P5205 【模板】多项式开根

18 篇文章 0 订阅

背景:

多项式全家桶 eating... \text{eating...} eating...

题目传送门:

https://www.luogu.org/problemnew/show/P5205

题意:

求一个多项式 G ( x ) G(x) G(x),使得: G 2 ( x ) ≡ F ( x ) ( m o d    x n ) G^2(x)≡F(x)(\mod x^n) G2(x)F(x)(modxn)

思路 1 1 1

两边同时去 ln ⁡ \ln ln,得:
ln ⁡ G 2 ( x ) ≡ ln ⁡ F ( x ) ( m o d    x n ) 2 ln ⁡ G ( x ) ≡ ln ⁡ F ( x ) ( m o d    x n ) ln ⁡ G ( x ) ≡ ln ⁡ F ( x ) 2 ( m o d    x n ) \begin{aligned}\ln G^2(x)&≡\ln F(x)(\mod x^n)\\ 2\ln G(x)&≡\ln F(x)(\mod x^n)\\ \ln G(x)&≡\frac{\ln F(x)}{2}(\mod x^n)\end{aligned} lnG2(x)2lnG(x)lnG(x)lnF(x)(modxn)lnF(x)(modxn)2lnF(x)(modxn)

因此对 F F F ln ⁡ \ln ln,得到的结果除以 2 2 2,最后取 exp \text{exp} exp即可。
为什么是取 exp \text{exp} exp,因为: G ( x ) = e ln ⁡ G ( x ) G(x)=e^{\ln G(x)} G(x)=elnG(x)

以后还是能用 int \text{int} int,就不用 long long \text{long long} long long吧, 40pts \text{40pts} 40pts 100pts \text{100pts} 100pts的差距。

代码 1 1 1

#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
const LL mod=998244353,G=3,inv_G=332748118;
using namespace std;
	int a[1000010],b[1000010],f[1000010],g[1000010],g1[1000010],g2[1000010],g3[1000010];
	int limit,n,l,r[1000010];
int dg(int x,int k)
{
	if(!k) return 1;
	int op=dg(x,k>>1);
	if(k&1) return (LL)op*op%mod*x%mod; else return (LL)op*op%mod;
}
int inv(int x)
{
	return dg(x,mod-2);
}
void dao(int *f,int *g,int n)
{
	for(int i=1;i<n;i++)
		g[i-1]=(LL)i*f[i]%mod;
	g[n-1]=0;
}
void jifen(int *f,int *g,int n)
{
	for(int i=1;i<n;i++)
		g[i]=(LL)f[i-1]*inv(i)%mod;
	g[0]=0;
}
void init(int n)
{
	limit=1,l=0;
	while(limit<(n<<1))
		limit<<=1,l++;
	for(int i=1;i<limit;i++)
	r[i]=((r[i>>1]>>1)|((i&1)<<(l-1)));
}
void NTT(int *now,int limit,int op)
{
	for(int i=0;i<limit;i++)
		if(i<r[i]) swap(now[i],now[r[i]]);
	for(int mid=1;mid<limit;mid<<=1)
	{
		int wn=dg(op==1?G:inv_G,(mod-1)/(mid<<1));
		for(int j=0;j<limit;j+=(mid<<1))
		{
			int w=1;
			for(int k=0;k<mid;k++,w=((LL)w*wn)%mod)
			{
				int x=now[j+k],y=(LL)w*now[j+k+mid]%mod;
				now[j+k]=(x+y)%mod;
				now[j+k+mid]=(x-y+mod)%mod;
			}
		}
	}
}
void dft(int *f,int n,int limit)
{
	NTT(f,limit,-1);
	int INV=inv(limit);
	for(int i=0;i<n;i++)
		f[i]=(LL)f[i]*INV%mod;
}
void poly_inv(int *f,int *g,int n)
{
	if(n==1)
	{
		g[0]=inv(f[0]);
		return;
	}
	poly_inv(f,g,(n+1)>>1);
	init(n);
	memset(a,0,sizeof(a));
	memset(b,0,sizeof(b));
	for(int i=0;i<n;i++)
		a[i]=f[i],b[i]=g[i];
	NTT(a,limit,1),NTT(b,limit,1);
	for(int i=0;i<limit;i++)
		b[i]=(LL)b[i]*((2ll-(LL)a[i]*b[i]%mod+mod)%mod)%mod;
	dft(b,n,limit);
	for(int i=0;i<n;i++)
		g[i]=b[i];
}
void poly_ln(int *f,int n)
{
	dao(f,g1,n);
	poly_inv(f,g2,n);
	init(n);
	NTT(g1,limit,1),NTT(g2,limit,1);
	for(int i=0;i<limit;i++)
		g1[i]=(LL)g1[i]*g2[i]%mod;
	dft(g1,n,limit);
	jifen(g1,g2,n);
}
void poly_exp(int *f,int *g,int n)
{
	if(n==1)
	{
		g[0]=1;
		return;
	}
	poly_exp(f,g,(n+1)>>1);
	memset(g1,0,sizeof(g1));
	memset(g2,0,sizeof(g2));
	poly_ln(g,n);
	init(n);
	memset(a,0,sizeof(a));
	memset(b,0,sizeof(b));
	for(int i=0;i<n;i++)
		a[i]=g[i],b[i]=((LL)(!i)-g2[i]+f[i]+mod)%mod;
	NTT(a,limit,1),NTT(b,limit,1);
	for(int i=0;i<limit;i++)
		a[i]=(LL)a[i]*b[i]%mod;
	dft(a,n,limit);
	for(int i=0;i<n;i++)
		g[i]=a[i];
}
void poly_sqrt(int *f,int *g,int n)
{
	poly_ln(f,n);
	int inv2=inv(2);
	for(int i=0;i<n;i++)
		g3[i]=(LL)g2[i]*inv2%mod;
	memset(g1,0,sizeof(g1));
	memset(g2,0,sizeof(g2));
	poly_exp(g3,g,n);
}
int main()
{
	scanf("%d",&n);
	for(int i=0;i<n;i++)
		scanf("%d",&f[i]);
	poly_sqrt(f,g,n);
	for(int i=0;i<n;i++)
		printf("%d ",g[i]);
}

思路 2 2 2

我们像求逆一样推式子。
G 2 ( x ) = F ( x ) ( m o d &ThinSpace;&ThinSpace; x n ) G^2(x)=F(x)(\mod x^n) G2(x)=F(x)(modxn)
假设我们已经搞定了 A 2 ( x ) ≡ F ( x ) ( m o d &ThinSpace;&ThinSpace; x ⌈ n 2 ⌉ ) A^2(x)≡F(x)(\mod x^{\lceil\frac{n}{2}\rceil}) A2(x)F(x)(modx2n)

两式相减,有:
G 2 ( x ) − A 2 ( x ) ≡ 0 ( m o d &ThinSpace;&ThinSpace; x ⌈ n 2 ⌉ ) G^2(x)-A^2(x)≡0(\mod x^{{\lceil\frac{n}{2}\rceil}}) G2(x)A2(x)0(modx2n)

两边同时平方,有:
( G 2 ( x ) − A 2 ( x ) ) 2 ≡ 0 ( m o d &ThinSpace;&ThinSpace; x n ) \big(G^2(x)-A^2(x)\big)^2≡0(\mod x^{n}) (G2(x)A2(x))20(modxn)

两边同时加上 4 A 2 ( x ) G 2 ( x ) 4A^2(x)G^2(x) 4A2(x)G2(x),有:
( G 2 ( x ) + A 2 ( x ) ) 2 ≡ 4 A 2 ( x ) G 2 ( x ) ( m o d &ThinSpace;&ThinSpace; x n ) \big(G^2(x)+A^2(x)\big)^2≡4A^2(x)G^2(x)(\mod x^{n}) (G2(x)+A2(x))24A2(x)G2(x)(modxn)

两边同时开方,有:
G 2 ( x ) + A 2 ( x ) ≡ 2 A ( x ) G ( x ) ( m o d &ThinSpace;&ThinSpace; x n ) G^2(x)+A^2(x)≡2A(x)G(x)(\mod x^{n}) G2(x)+A2(x)2A(x)G(x)(modxn)

F ( x ) + A 2 ( x ) ≡ 2 A ( x ) G ( x ) ( m o d &ThinSpace;&ThinSpace; x n ) F(x)+A^2(x)≡2A(x)G(x)(\mod x^{n}) F(x)+A2(x)2A(x)G(x)(modxn)

G ( x ) = A 2 ( x ) + F ( x ) 2 A ( x ) G(x)=\frac{A^2(x)+F(x)}{2A(x)} G(x)=2A(x)A2(x)+F(x)

套一个多项式求逆即可。
时间上更优秀些(常数更小)。

代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
const LL mod=998244353,G=3,inv_G=332748118;
using namespace std;
	int a[1000010],b[1000010],f[1000010],g[1000010],h1[1000010],h2[1000010],h3[1000010];
	int limit,n,l,r[1000010];
int dg(int x,int k)
{
	if(!k) return 1;
	int op=dg(x,k>>1);
	if(k&1) return (LL)op*op%mod*x%mod; else return (LL)op*op%mod;
}
int inv(int x)
{
	return dg(x,mod-2);
}
void init(int n)
{
	limit=1,l=0;
	while(limit<(n<<1))
		limit<<=1,l++;
	for(int i=1;i<limit;i++)
	r[i]=((r[i>>1]>>1)|((i&1)<<(l-1)));
}
void NTT(int *now,int limit,int op)
{
	for(int i=0;i<limit;i++)
		if(i<r[i]) swap(now[i],now[r[i]]);
	for(int mid=1;mid<limit;mid<<=1)
	{
		int wn=dg(op==1?G:inv_G,(mod-1)/(mid<<1));
		for(int j=0;j<limit;j+=(mid<<1))
		{
			int w=1;
			for(int k=0;k<mid;k++,w=((LL)w*wn)%mod)
			{
				int x=now[j+k],y=(LL)w*now[j+k+mid]%mod;
				now[j+k]=(x+y)%mod;
				now[j+k+mid]=(x-y+mod)%mod;
			}
		}
	}
}
void dft(int *f,int n,int limit)
{
	NTT(f,limit,-1);
	int INV=inv(limit);
	for(int i=0;i<n;i++)
		f[i]=(LL)f[i]*INV%mod;
}
void poly_inv(int *f,int *g,int n)
{
	if(n==1)
	{
		g[0]=inv(f[0]);
		return;
	}
	poly_inv(f,g,(n+1)>>1);
	init(n);
	memset(a,0,sizeof(a));
	memset(b,0,sizeof(b));
	for(int i=0;i<n;i++)
		a[i]=f[i],b[i]=g[i];
	NTT(a,limit,1),NTT(b,limit,1);
	for(int i=0;i<limit;i++)
		b[i]=(LL)b[i]*((2ll-(LL)a[i]*b[i]%mod+mod)%mod)%mod;
	dft(b,n,limit);
	for(int i=0;i<n;i++)
		g[i]=b[i];
}
void poly_sqrt(int *f,int *g,int n)
{
	if(n==1)
	{
		g[0]=1;
		return;
	}
	poly_sqrt(f,g,(n+1)>>1);
	init(n);
	memset(a,0,sizeof(a));
	for(int i=0;i<n;i++)
		a[i]=g[i];
	NTT(a,limit,1);
	for(int i=0;i<limit;i++)
		a[i]=(LL)a[i]*a[i]%mod;
	NTT(a,limit,-1);
	int INV=inv(limit);
	memset(h1,0,sizeof(h1));
	memset(h2,0,sizeof(h2));
	memset(h3,0,sizeof(h3));
	for(int i=0;i<n;i++)
		h1[i]=((LL)a[i]*INV%mod+f[i])%mod;
	for(int i=0;i<n;i++)
		h2[i]=2ll*g[i]%mod;
	poly_inv(h2,h3,n);
	NTT(h1,limit,1),NTT(h3,limit,1);
	for(int i=0;i<limit;i++)
		h1[i]=(LL)h1[i]*h3[i]%mod;
	NTT(h1,limit,-1);
	for(int i=0;i<n;i++)
		g[i]=(LL)h1[i]*INV%mod;
}
int main()
{
	scanf("%d",&n);
	for(int i=0;i<n;i++)
		scanf("%d",&f[i]);
	poly_sqrt(f,g,n);
	for(int i=0;i<n;i++)
		printf("%d ",g[i]);
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值