luogu P4491 [HAOI2018]染色

背景:

暑假集训七月份最后一天,写写原来没有写过的 blog \text{blog} blog吧。
300 300 300篇原创。

题目传送门:

https://www.luogu.org/problemnew/show/P4491

题意:

给出 n , m , s , W k n,m,s,W_k n,m,s,Wk,现在有一个长度为 n n n的序列和 m m m种颜色,可以给这个序列染色,若出现 S S S次的颜色有 k k k种,则会产生 W k W_k Wk的贡献,问最后的贡献。

思路:

假设出现 S S S次的颜色有 k k k种。
f k f_k fk表示至少有 k k k种出现 S S S次的颜色的方案数,则有:
f k = C m k C n k s ( k s ) ! ( s ! ) k ( m − k ) n − k s f_k=\frac{C_{m}^{k}C_{n}^{ks}(ks)!}{(s!)^k}(m-k)^{n-ks} fk=(s!)kCmkCnks(ks)!(mk)nks

解释一下:
m m m种颜色中选 k k k种的方案数为 C m k C_{m}^{k} Cmk
n n n个位置中选 k s ks ks个的方案数为 C n k s C_{n}^{ks} Cnks
在这 k s ks ks个位置中,可以打乱排序,方案数为 ( k s ) ! (ks)! (ks)!,又因为交换相同的颜色方案数不变,因此要除以 ( s ! ) k (s!)^k (s!)k
在剩下的 n − k s n-ks nks的位置上可以填 m − k m-k mk种颜色,方案数为 ( m − k ) n − k s (m-k)^{n-ks} (mk)nks

g i g_i gi表示出现 S S S次的颜色有 i i i种的方案数。
仔细思考,发现有:
f k = ∑ i = k m C i k g i f_k=\sum_{i=k}^{m}C_{i}^{k}g_i fk=i=kmCikgi

二项式反演一下,有:
g k = ∑ i = k m ( − 1 ) i − k C i k f i g_k=\sum_{i=k}^{m}(-1)^{i-k}C_{i}^{k}f_i gk=i=km(1)ikCikfi

化简一下,有:
g k = ∑ i = k m ( − 1 ) i − k i ! f i k ! ( i − k ) ! g_k=\sum_{i=k}^{m}(-1)^{i-k}\frac{i!f_i}{k!(i-k)!} gk=i=km(1)ikk!(ik)!i!fi

g k = 1 k ! ∑ i = k m i ! f i ( − 1 ) i − k ( i − k ) ! g_k=\frac{1}{k!}\sum_{i=k}^{m}i!f_i\frac{(-1)^{i-k}}{(i-k)!} gk=k!1i=kmi!fi(ik)!(1)ik

发现里面是一个卷积的形式,用 NTT \text{NTT} NTT优化即可。

代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
const int mod=1004535809,G=3,inv_G=334845270;
using namespace std;
	int fac[12000010],Inv[12000010],a[12000010],b[12000010],f[12000010],g[12000010],w[12000010];
	int limit,l,r[12000010];
	int n,m,s,ans=0;
int dg(int x,int k)
{
	if(!k) return 1;
	int op=dg(x,k>>1);
	if(k&1) return (LL)op*op%mod*x%mod; else return (LL)op*op%mod;
}
int inv(int x)
{
	return dg(x,mod-2);
}
void init(int n)
{
	limit=1,l=0;
	while(limit<(n<<1))
		limit<<=1,l++;
	for(int i=1;i<limit;i++)
	r[i]=((r[i>>1]>>1)|((i&1)<<(l-1)));
}
void NTT(int *now,int limit,int op)
{
	for(int i=0;i<limit;i++)
		if(i<r[i]) swap(now[i],now[r[i]]);
	for(int mid=1;mid<limit;mid<<=1)
	{
		int wn=dg(op==1?G:inv_G,(mod-1)/(mid<<1));
		for(int j=0;j<limit;j+=(mid<<1))
		{
			int w=1;
			for(int k=0;k<mid;k++,w=((LL)w*wn)%mod)
			{
				int x=now[j+k],y=(LL)w*now[j+k+mid]%mod;
				now[j+k]=(x+y)%mod;
				now[j+k+mid]=(x-y+mod)%mod;
			}
		}
	}
}
LL C(int n,int m)
{
	return (LL)fac[n]*Inv[m]%mod*Inv[n-m]%mod;
}
void INIT()
{
	fac[0]=fac[1]=1;
	Inv[0]=Inv[1]=1;
	for(int i=2;i<=max(n,m);i++)
	{
		fac[i]=(LL)fac[i-1]*i%mod;
		Inv[i]=((LL)mod-mod/i)*Inv[mod%i]%mod;
	}
	for(int i=2;i<=max(n,m);i++)
		Inv[i]=(LL)Inv[i]*Inv[i-1]%mod;

	for(int k=0;k<=min(n/s,m);k++)
		f[k]=(LL)C(m,k)*C(n,k*s)%mod*fac[k*s]%mod*dg(Inv[s],k)%mod*dg(m-k,n-k*s)%mod;
}
int main()
{
	scanf("%d %d %d",&n,&m,&s);
	for(int i=0;i<=n;i++)
		scanf("%d",&w[i]);
	INIT();
	init(m+1);
	memset(a,0,sizeof(a));
	memset(b,0,sizeof(b));
	for(int i=0;i<=m;i++)
	{
		a[i]=(LL)f[i]*fac[i]%mod;
		b[i]=((((m-i)&1)?-1ll:1ll)*Inv[m-i]%mod+mod)%mod;
	}
	
	NTT(a,limit,1),NTT(b,limit,1);
	for(int i=0;i<limit;i++)
		a[i]=(LL)a[i]*b[i]%mod;
	
	NTT(a,limit,-1);
	int INV=inv(limit);
	for(int i=0;i<limit;i++)
		f[i]=(LL)a[i]*INV%mod;
	for(int i=0;i<=m;i++)
		ans=((LL)ans+(LL)f[i+m]*Inv[i]%mod*w[i]%mod)%mod;
	printf("%d",ans);
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值