杭二学习Day1——专题(欧拉路径&欧拉回路&哈密顿路径&哈密顿回路)

背景:

昨天晚上肝到好晚,今天中午补一下吧。



欧拉路径&欧拉回路:

定义:

如果图 G G G中的一个路径包括每个边恰好一次,则该路径称为欧拉路径 (Euler path) \text{(Euler path)} (Euler path)
如果一个回路是欧拉路径,则称为欧拉回路 (Euler circuit) \text{(Euler circuit)} (Euler circuit)
——摘自《百度百科》

判断的充要条件:

欧拉路径
G G G是连通的,无孤立点。
无向图奇点数为 0 0 0 2 2 2,并且这两个奇点其中一个为起点另外一个为终点。
有向图,可以存在两个点,其入度不等于出度,其中一个出度比入度大 1 1 1,为路径的起点;另外一个入度比出度大 1 1 1,为路径的终点。

欧拉回路
G G G是连通的,无孤立点。
无向图奇点数为 0 0 0
有向图每个点的入度必须等于出度。

求解:
题目传送门:https://www.luogu.org/problem/P2731
假设当前的图中存在欧拉路径,如何求解欧拉路径(或欧拉回路)?
具体做法是:找到起点(欧拉路径就是奇数点无向图是任意一个奇点,有向图是出度比入度大 1 1 1的奇点;欧拉回路的起点要枚举)后 dfs \text{dfs} dfs,每一次将遍历到的边删除,直到无法走通。若当前无法走通,加入栈中。将最后的栈反向输出即为结果。

这样的时间复杂度是: Θ ( n 2 ) \Theta(n^2) Θ(n2)
如果你用一个 set \text{set} set维护删边的话,那么时间复杂度就是 Θ ( n log ⁡ n ) \Theta(n\log n) Θ(nlogn)

代码:
(无向图)

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
	int n,ma=0,mi=1000,top=0,st;
	int a[2010][2010],du[2010],sta[2010];
void dfs(int x)
{
	for(int i=mi;i<=ma;i++)
		if(a[i][x])
		{
			a[i][x]--,a[x][i]--;
			dfs(i);
		}
	sta[++top]=x;
}
int main()
{
	int x,y;
	scanf("%d",&n);
	for(int i=1;i<=n;i++)
	{
		scanf("%d %d",&x,&y);
		du[x]++,du[y]++;
		a[x][y]++,a[y][x]++;
		ma=max(ma,max(x,y)),mi=min(mi,min(x,y));
	}
	for(int i=mi;i<=ma;i++)
		if(du[i]&1)
		{
			st=i;
			break;
		}
	if(!st)
	{
		for(int i=mi;i<=ma;i++)
		{
			dfs(i);
			if(sta[1]==sta[top]) break;
		}
	}
	else
	{
		dfs(st);
	}
	for(int i=top;i>=1;i--)
		printf("%d\n",sta[i]);
}


哈密顿路径&哈密顿回路:

网上的 blog \text{blog} blog太少了。
定义:

如果图 G G G中的一个路径包括每个点恰好一次,则该路径称为哈密顿路径 (Hamiltonian path) \text{(Hamiltonian path)} (Hamiltonian path)
如果一个回路是哈密顿路径(此时起点经过两次),则称为哈密顿回路 (Hamiltonian circuit) \text{(Hamiltonian circuit)} (Hamiltonian circuit)
——摘自《百度百科》

判断的充要条件:
哈密顿路径
NP \text{NP} NP问题,暴力搜索或状压。

哈密顿回路
Dirac \text{Dirac} Dirac定理:若无向图上有 n n n个点,每一个点的度都大于等于 ⌈ n 2 ⌉ \lceil\frac{n}{2}\rceil 2n,则一定存在哈密顿回路。
证明:
没看懂的证明。
选出两个点 u , v u,v u,v,剩下 n − 2 n-2 n2个点,因为每一个点的度都大于等于 ⌈ n 2 ⌉ \lceil\frac{n}{2}\rceil 2n,所以 d u + d v ≥ ⌈ n 2 ⌉ + ⌈ n 2 ⌉ ≥ n d_u+d_v≥\lceil\frac{n}{2}\rceil+\lceil\frac{n}{2}\rceil≥n du+dv2n+2nn,因此一定存在一个点连接 x , y x,y x,y,因此每两个点都相通。

求解:
题目传送门: poj2438 \text{poj2438} poj2438
假设当前的无向图图中存在哈密顿回路,如何求解哈密顿回路?
[ 1 ] . [1]. [1].任意找两个相邻点 S , T S,T S,T且存在一条边 S → T S→T ST。若存在边 x → S x→S xS x x x不在路径 S → T S→T ST上,则更新 S = x S=x S=x。这样我们就得到了一条从 S → T S→T ST的最长的路径。
[ 2 ] . [2]. [2].若最后的存在一条边 T → S T→S TS,则 S − T S-T ST构成了一个回路,且每一个点都经过一次,此时为哈密顿回路。
[ 3 ] . [3]. [3]. S S S T T T不相邻,可以构造出一个回路。设路径 S → T S→T ST上有 k + 2 k+2 k+2个节点,依次为 S , v 1 , v 2 … … v k S,v_1,v_2……v_k S,v1,v2vk T T T。可以证明存在节点 v i v_i vi i ∈ [ 1 , k ) i∈[1,k) i[1,k),满足 v i v_i vi T T T相邻,且 v i + 1 v_{i+1} vi+1 S S S相邻。证明方法与上面类似。找到了满足条件的节点 v i v_i vi以后,就可以把原路径变成 S → v i → T → v i + 1 → S S→v_{i}→T→v_{i+1}→S SviTvi+1S,即形成了一个回路。
有图有真相,就在这晒:
在这里插入图片描述
[ 4 ] . [4]. [4].在当前的回路中找到一个点,这个点有一条连向外面的边,那么从该点处把回路断开,就变回了一条路径,同时还可以将与之相邻的点加入路径。
重复步骤 [ 2 ] , [ 3 ] , [ 4 ] [2],[3],[4] [2],[3],[4],直到所有点都被遍历过。
证明略。
代码:

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
	int n,m,s,t,u;
	int ans[510];
	bool bz[510],ma[510][510];
void find()
{
	while(1)
	{
		bool flag=false;
		for(int i=1;i<=n;i++)
			if(!bz[i]&&ma[t][i])
			{
				bz[i]=true;
				ans[++u]=i;
				t=i;
				flag=true;
				break;
			}
		if(!flag) return;
	}
}
void Swap(int x,int y)
{
	while(x<y)
	{
		swap(ans[x],ans[y]);
		x++,y--;
	}
}
void work()
{
	for(int i=1;i<=n;i++)
		if(ma[s][i])
		{
			t=i;
			break;
		}
	bz[s]=bz[t]=true;
	ans[1]=s,ans[2]=t;
	while(1)
	{
		find();
		Swap(1,u);
		swap(s,t);
		find();
		if(!ma[s][t])
			for(int i=2;i<u-1;i++)
				if(ma[t][ans[i]]&&ma[s][ans[i+1]])
				{
					Swap(i+1,u);
					t=ans[i+1];
					break;
				}
		if(u==n) return;
		for(int j=1;j<=n;j++)
		{
			bool flag=true;
			if(bz[j]) continue;
			for(int i=2;i<u-1;i++)
				if(ma[j][ans[i]])
				{
					s=ans[i-1];
					t=j;
					Swap(1,i-1);
					Swap(i,u);
					ans[++u]=j;
					bz[j]=true;
					flag=false;
					break;
				}
			if(!flag) break;
		}
	}
}
int main()
{
	int x,y;
	while(scanf("%d %d",&n,&m)!=EOF,(n||m))
	{
		n<<=1;
		s=1,u=2;
		memset(bz,false,sizeof(bz));
		memset(ma,true,sizeof(ma));
		for(int i=1;i<=n;i++)
			ma[i][i]=false;
		for(int i=1;i<=m;i++)
		{
			scanf("%d %d",&x,&y);
			ma[x][y]=ma[y][x]=false;
		}
		work();
		for(int i=1;i<=n;i++)
			printf("%d ",ans[i]);
		printf("\n");
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值