题目传送门:https://www.luogu.org/problemnew/show/P1129
题意:
有一个n*n的01矩阵,求是否存在一种选任意两行或任意两列交换的方案使得主对角线((1,1),(2,2)(3,3)...(n,n))的值都为1。
思路:
又是一种新的网络流建模方法。
先将构图再讲原理吧。
构图:
1.原点向每一行连边,流量为1;
2.每一列向汇点连边,流量为1;
3.对于一个值为1的点,其对应的行向对应的列连边,流量为1。
原理很好想(翻了许多题解)。
因为主对角线的值都为1,所以满足每一行、每一列都出现一个值为1的数,所以满足二分图的性质,即每一行都和某一列匹配,也就是说如果跑完的流量为n,就一定满足匹配。
代码:
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#define INF 2147483647
using namespace std;
queue<int> f;
struct node{int x,y,z,next;} a[100000];
int last[500];
int n,len,st,ed;
void ins(int x,int y,int z)
{
a[++len].x=x;a[len].y=y;a[len].z=z;a[len].next=last[x];last[x]=len;
}
int h[500];
bool bfs()
{
memset(h,0,sizeof(h));
h[st]=1;
f.push(st);
while(!f.empty())
{
int x=f.front();
for(int i=last[x];i>=0;i=a[i].next)
{
int y=a[i].y;
if(a[i].z>0&&h[y]==0)
{
h[y]=h[x]+1;
f.push(y);
}
}
f.pop();
}
if(h[ed]) return true; else return false;
}
int dfs(int x,int f)
{
int s=0,t;
if(x==ed) return f;
for(int i=last[x];i>=0;i=a[i].next)
{
int y=a[i].y;
if(a[i].z>0&&h[y]==h[x]+1&&f>s)
{
s+=(t=(dfs(y,min(f-s,a[i].z))));
a[i].z-=t;
a[i^1].z+=t;
}
}
if(!s) h[x]=0;
return s;
}
int dinic()
{
int sum=0;
while(bfs())
sum+=dfs(st,INF);
return sum;
}
int main()
{
int T,x;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
st=0,ed=2*n+1;
len=-1;
memset(last,-1,sizeof(last));
for(int i=1;i<=n;i++)
{
ins(st,i,1),ins(i,st,0);
ins(i+n,ed,1),ins(ed,i+n,0);
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
scanf("%d",&x);
if(x) ins(i,j+n,1),ins(j+n,i,0);
}
printf(dinic()==n?"Yes\n":"No\n");
}
}