luogu P1129 [ZJOI2007]矩阵游戏

题目传送门:https://www.luogu.org/problemnew/show/P1129



题意:

有一个n*n的01矩阵,求是否存在一种选任意两行或任意两列交换的方案使得主对角线((1,1),(2,2)(3,3)...(n,n))的值都为1。



思路:

又是一种新的网络流建模方法。

先将构图再讲原理吧。


构图:

1.原点向每一行连边,流量为1;

2.每一列向汇点连边,流量为1;

3.对于一个值为1的点,其对应的行向对应的列连边,流量为1。

原理很好想(翻了许多题解)

因为主对角线的值都为1,所以满足每一行、每一列都出现一个值为1的数,所以满足二分图的性质,即每一行都和某一列匹配,也就是说如果跑完的流量为n,就一定满足匹配。



代码:

#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#define INF 2147483647
using namespace std; 
queue<int> f;
	struct node{int x,y,z,next;} a[100000];
	int last[500];
	int n,len,st,ed;
void ins(int x,int y,int z)
{
	a[++len].x=x;a[len].y=y;a[len].z=z;a[len].next=last[x];last[x]=len;
}
int h[500];
bool bfs()
{
	memset(h,0,sizeof(h));
	h[st]=1;
	f.push(st);
	while(!f.empty())
	{
		int x=f.front();
		for(int i=last[x];i>=0;i=a[i].next)
		{
			int y=a[i].y;
			if(a[i].z>0&&h[y]==0)
			{
				h[y]=h[x]+1;
				f.push(y);
			}
		}
		f.pop();
	}
	if(h[ed]) return true; else return false;
}
int dfs(int x,int f)
{
	int s=0,t;
	if(x==ed) return f;
	for(int i=last[x];i>=0;i=a[i].next)
	{
		int y=a[i].y;
		if(a[i].z>0&&h[y]==h[x]+1&&f>s)
		{
			s+=(t=(dfs(y,min(f-s,a[i].z))));
			a[i].z-=t;
			a[i^1].z+=t;
		}
	}
	if(!s) h[x]=0;
	return s;
}
int dinic()
{
	int sum=0;
	while(bfs())
		sum+=dfs(st,INF);
	return sum;
}
int main()
{
	int T,x;
	scanf("%d",&T);
	while(T--)
	{
		scanf("%d",&n);
		st=0,ed=2*n+1;
		len=-1;
		memset(last,-1,sizeof(last));
		for(int i=1;i<=n;i++)
		{
			ins(st,i,1),ins(i,st,0);
			ins(i+n,ed,1),ins(ed,i+n,0);
		}
		for(int i=1;i<=n;i++)
			for(int j=1;j<=n;j++)
			{
				scanf("%d",&x);
				if(x) ins(i,j+n,1),ins(j+n,i,0);
			}
		printf(dinic()==n?"Yes\n":"No\n");
	}
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值