原文链接:https://blog.csdn.net/sihailongwang/article/details/72779074
我觉得学习caffe,必须得做到会修改源码,刚开始可以不需要知道所有的函数是如何实现的,但必须得知道里边都有哪些函数,这些函数都可以干什么。
用网上流行的比喻:Blobs,Layers,Nets的关系就好比,Blob是砖块,Layer是墙,net是一栋大楼。
Blob:
Blob是一个模板类,在内存中表示4维数组,维度从低到高为:width、height、channels(颜色通道)、num(第几帧)
函数总结:
Reshape:变形函数,根据输入参数重新设置当前Blob形状
cpu_data:只读获取cpudata的指针
set_cpu_data:修改cpudata的指针
gpu_data:只读获得gpudata的指针
cpu_diff:只读获得cpudiff的指针
gpu_diff:只读获得gpudiff的指针
mutable_cpu_data:读写访问cpudata的指针
mutable_gpu_data:读写访问gpudata的指针
mutable_cpu_diff:读写访问cpudiff的指针
mutable_gpu_diff:读写访问gpudiff的指针
ShareData:共享data指针
ShareDiff:共享diff指针
Update:网络参数Blob的更新
asum_data:计算data的L1范数
sumsq_data:计算data的L2范数
scale_data:对data进行幅度缩放
CopyFrom:从另一个Blob对象拷贝data
FromProto:从BlobProto中加载一个Blob
ToProto:将Blob中的data导出到BlobProto结构体
Layer:
Layer至少有一个输入Blob和一个输出Blob,部分Layer带有权值和偏置项,有两个运算方向:前向传播、后向传播
值得注意的是:大部分函数没有在Layer.cpp中实现,只有虚函数,真正实现的都在派生类中,具体看各个cpp
函数总结:
Reshape:变形函数,修改TopBlob以及内部Blob缓冲区的形状
Forward:前向传播函数,给定BottomBlob,计算TopBlob和Loss,返回值为当前层loss
Backward:反向传播函数,给定TopBlob误差梯度,就按BottomBlob误差梯度
ToProto:将Layer初始化参数写入ProtoBuffer缓冲区中
loss:返回某个TopBlob相关的标量loss值
CheckBlobCounts:校验输入/输出BLob数目是否满足Layer要求
SetLossWeights:该函数在layer中SetUp函数中被调用,主要目的是初始化与TopBlob相关的loss权重,放到TopBlob的diff域中,实际由Forward()计算loss
在layer中的Forward和Backward是前向传播函数和后向传播函数包装,不需要修改这两个函数,使用的时候只需要在派生类改写Forward_cpu、Forward_gpu、Backward_cpu、Backward_gpu
Net:
Net在caffe中代表一个完整的CNN模型,它包括若干Layer实例函数总结:
ForwardPrefilled:运行前向传播,输入Blob已经预先填充
ForwardFromTo:前向传播的其中一种形式,还包括其他两种形式
Forward:前向传播,指定输入Blob进行前向传播
ClearParamDiffs:清零所有权值的diff域,应在反向传播之前运行
Backward:反向传播,无需指定输入/输出Blob,因为前向传播的时候已经建立联系
ForwardBackward:前向传播+后向传播,输入为BottomBlob,输出为loss
Update:根据已经(solver)准备好的diff值更新网络权值
ToProto:序列化一个Net到ProtoBuffer
ToHDF5:序列化一个Net到HDF5
num_inputs:返回输入Blob数目
num_output:返回输出Blob数目
FilterNet:过滤掉用户指定的在某个阶段、级别、状态下不应该包含的Layer
AppendTop:为网络追加一个TopBlob
AppendBottom:为网络追加一个BottomBlob
AppendParam:为网络追加一个权值Blob
Solver及其配置(http://www.cnblogs.com/denny402/p/5074049.html)
solver算是caffe的核心的核心,它协调着整个模型的运作。caffe程序运行必带的一个参数就是solver配置文件。在DeepLearning中,往往lossfunction是非凸的,没有解析解,我们需要通过优化方法来求解。solver的主要作用就是交替调用前向(forward)算法和后向(backward)算法来更新参数,从而最小化loss,实际上就是一种迭代的优化算法。
到目前的版本,caffe提供了六种优化算法来求解最优参数,在solver配置文件中,通过设置type类型来选择。
StochasticGradient Descent (type: "SGD"),
AdaDelta(type: "AdaDelta"),
AdaptiveGradient (type: "AdaGrad"),
Adam(type: "Adam"),
Nesterov’sAccelerated Gradient (type: "Nesterov") and
RMSprop(type: "RMSProp")
Solver的流程:
1.设计好需要优化的对象,以及用于学习的训练网络和用于评估的测试网络。(通过调用另外一个配置文件prototxt来进行)
2.通过forward和backward迭代的进行优化来跟新参数。
3.定期的评价测试网络。(可设定多少次训练后,进行一次测试)
4.在优化过程中显示模型和solver的状态
在每一次的迭代过程中,solver做了这几步工作:
1、调用forward算法来计算最终的输出值,以及对应的loss
2、调用backward算法来计算每层的梯度
3、根据选用的slover方法,利用梯度进行参数更新
4、记录并保存每次迭代的学习率、快照,以及对应的状态。
实例:
net:"examples/mnist/lenet_train_test.prototxt"
设置深度网络模型。每一个模型就是一个net,需要在一个专门的配置文件中对net进行配置,每个net由许多的layer所组成。每一个layer的具体配置方式可参考本系列文文章中的(2)-(5)。注意的是:文件的路径要从caffe的根目录开始,其它的所有配置都是这样。
test_iter:100
这个要与testlayer中的batch_size结合起来理解。mnist数据中测试样本总数为10000,一次性执行全部数据效率很低,因此我们将测试数据分成几个批次来执行,每个批次的数量就是batch_size。假设我们设置batch_size为100,则需要迭代100次才能将10000个数据全部执行完。因此test_iter设置为100。执行完一次全部数据,称之为一个epoch。
test_interval:500
测试间隔。也就是每训练500次,才进行一次测试。
base_lr:0.01
momentum:0.9:上一次梯度更新的权重
type:SGD:优化算法选择。这一行可以省掉,因为默认值就是SGD。总共有六种方法可选择,
weight_decay:0.0005:权重衰减项,防止过拟合的一个参数。
lr_policy:"inv"
gamma:0.0001
power:0.75
display:100:每训练100次,在屏幕上显示一次。如果设置为0,则不显示。
max_iter:20000:最大迭代次数。这个数设置太小,会导致没有收敛,精确度很低。设置太大,会导致震荡,浪费时间。
snapshot:5000
snapshot_prefix:"examples/mnist/lenet"
快照。将训练出来的model和solver状态进行保存,snapshot用于设置训练多少次后进行保存,默认为0,不保存。snapshot_prefix设置保存路径。
还可以设置snapshot_diff,是否保存梯度值,默认为false,不保存。
也可以设置snapshot_format,保存的类型。有两种选择:HDF5和BINARYPROTO,默认为BINARYPROTO
solver_mode:CPU:设置运行模式。默认为GPU,如果你没有GPU,则需要改成CPU,否则会出错。
base_lr:0.01
lr_policy:"inv"
gamma:0.0001
power:0.75
这四行可以放在一起理解,用于学习率的设置。只要是梯度下降法来求解优化,都会有一个学习率,也叫步长。base_lr用于设置基础学习率,在迭代的过程中,可以对基础学习率进行调整。怎么样进行调整,就是调整的策略,由lr_policy来设置。
lr_policy可以设置为下面这些值,相应的学习率的计算为:
fixed:保持base_lr不变.
step:如果设置为step,则还需要设置一个stepsize,返回base_lr*gamma ^(floor(iter / stepsize)),其中iter表示当前的迭代次数
exp:返回base_lr* gamma ^ iter,iter为当前迭代次数
inv:如果设置为inv,还需要设置一个power,返回base_lr* (1 + gamma * iter) ^ (- power)
multistep:如果设置为multistep,则还需要设置一个stepvalue。这个参数和step很相似,step是均匀等间隔变化,而multistep则是根据stepvalue值变化
poly:学习率进行多项式误差,返回base_lr(1 - iter/max_iter)^(power)
-
sigmoid: 学习率进行sigmod衰减,返回base_lr( 1/(1 + exp(-gamma * (iter - stepsize))))
https://blog.csdn.net/yan_joy/article/details/53079185
diff梯度
https://blog.csdn.net/lanxueCC/article/details/53186613
下面我们从caffe.cpp的main函数入口开始观察Caffe是怎么一步一步训练网络的。在caffe.cpp中main函数之外通过RegisterBrewFunction这个宏在每一个实现主要功能的函数之后将这个函数的名字和其对应的函数指针添加到了g_brew_map中,具体分别为train(),test(),device_query(),time()这四个函数。在运行的时候,根据传入的参数在main函数中,通过GetBrewFunction得到了我们需要调用的那个函数的函数指针,并完成了调用。