有 N 组物品和一个容量是 V 的背包。
每组物品有若干个,同一组内的物品最多只能选一个。
每件物品的体积是 vij,价值是 wij,其中 i 是组号,j 是组内编号。
求解将哪些物品装入背包,可使物品总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行有两个整数 N,V,用空格隔开,分别表示物品组数和背包容量。
接下来有 N 组数据:
每组数据第一行有一个整数 Si,表示第 i 个物品组的物品数量;
每组数据接下来有 Si 行,每行有两个整数 vij,wij,用空格隔开,分别表示第 i 个物品组的第 j 个物品的体积和价值;
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤100
0<Si≤100
0<vij,wij≤100
输入样例
3 5
2
1 2
2 4
1
3 4
1
4 5
输出样例:
8
#include<bits/stdc++.h>
using namespace std;
#define maxn 1000010
typedef long long ll;
int a[maxn],b[maxn],dp[maxn];
int main(){
memset(dp,0,sizeof(dp));
int n,m; scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
int num; scanf("%d",&num);
for(int j=1;j<=num;j++) scanf("%d%d",&a[j],&b[j]);
for(int j=m;j>=0;j--){
for(int k=1;k<=num;k++){
if(j-a[k]>=0) dp[j]=max(dp[j],dp[j-a[k]]+b[k]);
}
}
}
printf("%d\n",dp[m]);
return 0;
}
#include<bits/stdc++.h>
using namespace std;
#define maxn 1010
typedef long long ll;
int a[maxn],b[maxn],dp[maxn][maxn];
int main(){
memset(dp,0,sizeof(dp));
int n,m; scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
int num; scanf("%d",&num);
for(int j=1;j<=num;j++) scanf("%d%d",&a[j],&b[j]);
for(int j=0;j<=m;j++) dp[i][j]=dp[i-1][j];
for(int k=1;k<=num;k++){
for(int j=m;j>=a[k];j--){
dp[i][j]=max(dp[i][j],dp[i-1][j-a[k]]+b[k]);
}
}
}
printf("%d\n",dp[n][m]);
return 0;
}