Mathematical Issues

一. Euler-Lagrange方程
y ( x ) y(x) y(x) [ a , b ] [a,b] [a,b]上的可微函数,一个重要的研究对象是简单泛函 J ( y ) = ∫ a b F ( x , y , y ′ ) d x J(y)=\int_a^bF(x,y,y')dx J(y)=abF(x,y,y)dx 其中 F ( x , y , y ′ ) F(x,y,y') F(x,y,y)称为泛函的核,它是关于 x , y , y ′ x,y,y' x,y,y的一个函数。

变分法的主要问题就是计算泛函的极值问题:对于怎样的 y y y, 简单泛函 J ( y ) J(y) J(y) 取最大值?

假设 y 0 y_0 y0 使得 J ( y ) J(y) J(y) 取最大值,那么对于任意函数 η ( x ) \eta(x) η(x) 和任意小的数 ϵ > \epsilon > ϵ>,有 J ( y 0 ) ≥ J ( y 0 + ϵ η ) J(y_0)\ge J(y_0+\epsilon\eta) J(y0)J(y0+ϵη) 考虑到在两个端点的函数扰动为 0 0 0,我们假设 η ( a ) = η ( b ) = 0 \eta(a)=\eta(b)=0 η(a)=η(b)=0。由于 y 0 y_0 y0 固定,对于任意函数 η ( x ) \eta(x) η(x), 可以将 J ( y 0 + ϵ η ) J(y_0+\epsilon\eta) J(y0+ϵη) 看作是 ϵ \epsilon ϵ 的函数: T ( ϵ ) = J ( y 0 + ϵ η ) T(\epsilon)=J(y_0+\epsilon\eta) T(ϵ)=J(y0+ϵη),它在 ϵ = 0 \epsilon=0 ϵ=0 处取得最大值,所以 ∂ T ∂ ϵ = ∫ a b ( ∂ F ∂ x ⋅ 0 + ∂ F ∂ y ⋅ η + ∂ F ∂ y ′ ⋅ η ′ ) d x = 0 \frac{\partial T}{\partial \epsilon}=\int_a^b\left(\frac{\partial F}{\partial x}\cdot 0 + \frac{\partial F}{\partial y}\cdot\eta + \frac{\partial F}{\partial y'}\cdot{\eta'}\right)dx=0 ϵT=ab(xF0+yFη+yFη)dx=0因此
∫ a b ( ∂ F ∂ y ⋅ η + ∂ F ∂ y ′ ⋅ η ′ ) d x = 0 \int_a^b\left( \frac{\partial F}{\partial y}\cdot\eta + \frac{\partial F}{\partial y'}\cdot{\eta'}\right)dx=0 ab(yFη+yFη)dx=0
利用分部积分法
∫ a b ∂ F ∂ y ′ ⋅ η ′ d x = ∫ a b ∂ F ∂ y ′ d η = η ⋅ ∂ F ∂ y ′ ∣ a b − ∫ a b η ⋅ d d x ( ∂ F ∂ y ′ ) d x = − ∫ a b η ⋅ d d x ( ∂ F ∂ y ′ ) d x \int_a^b \frac{\partial F}{\partial y'}\cdot{\eta'}dx=\int_a^b \frac{\partial F}{\partial y'}d\eta=\eta\cdot\frac{\partial F}{\partial y'}\Bigg|_a^b-\int_a^b\eta\cdot\frac{d}{dx}\left( \frac{\partial F}{\partial y'}\right)dx=-\int_a^b\eta\cdot\frac{d}{dx}\left( \frac{\partial F}{\partial y'}\right)dx abyFηdx=abyFdη=ηyFababηdxd(yF)dx=abηdxd(yF)dx
因此,对任意函数 η ( x ) \eta(x) η(x),有 ∫ a b η ⋅ [ ∂ F ∂ y − d d x ( ∂ F ∂ y ′ ) ] d x = 0 \int_a^b\eta\cdot\left[\frac{\partial F}{\partial y}- \frac{d}{dx}\left( \frac{\partial F}{\partial y'}\right)\right]dx=0 abη[yFdxd(yF)]dx=0于是,我们便得到变分法中的Euler-Lagrange方程 ∂ F ∂ y − d d x ( ∂ F ∂ y ′ ) = 0 \frac{\partial F}{\partial y}- \frac{d}{dx}\left( \frac{\partial F}{\partial y'}\right)=0 yFdxd(yF)=0

二、Markov不等式和Chebyshev不等式

Markov不等式:设 X X X 为一非负随机变量,且 a > 0 a>0 a>0,则
P ( X ≥ a ) ≤ E ( X ) a \mathbf{P}(X\ge a)\leq \frac{\mathbf{E}(X)}{a} P(Xa)aE(X)

Chebyshev不等式: 设随机变量 X X X 具有期望 E ( X ) = μ \mathbf{E}(X)=\mu E(X)=μ,方差 D ( X ) = σ 2 \mathbf{D}(X)=\sigma^2 D(X)=σ2,则对任意正数 ϵ \epsilon ϵ,以下不等式成立:
P ( ∣ X − μ ∣ ≥ ϵ ) ≤ σ 2 ϵ 2 &ThickSpace; , P ( ∣ X − μ ∣ &lt; ϵ ) ≥ 1 − σ 2 ϵ 2 \mathbf{P}(|X-\mu|\ge \epsilon)\leq\frac{\sigma^2}{\epsilon^2}\;,\qquad \mathbf{P}(|X-\mu|&lt; \epsilon)\ge1-\frac{\sigma^2}{\epsilon^2} P(Xμϵ)ϵ2σ2,P(Xμ<ϵ)1ϵ2σ2

三、随机分布的二次逼近引理

假设随机变量 ξ \xi ξ 的均值为 ξ \xi ξ,标准方差为 σ 2 \sigma^2 σ2,[1] 中证明下面非常有趣的引理:

引理:给定固定的 y y y μ , σ \mu, \sigma μ,σ,那么存在一个二次函数 Q ( ξ ) = α + β ξ + δ ξ 2 Q(\xi)=\alpha + \beta\xi + \delta\xi^2 Q(ξ)=α+βξ+δξ2 使得对任意 ξ ≥ 0 \xi\ge 0 ξ0 Q ( ξ ) ≤ min ⁡ ( y , ξ ) Q(\xi) \leq \min(y,\xi) Q(ξ)min(y,ξ) 其中等式仅在两点 a a a b b b 成立。此外,在 { a , b } \{a,b\} {a,b} 上存在一个二点分布,使得其均值和标准方差为 ξ \xi ξ σ 2 \sigma^2 σ2

Hiroshi 在 [2] 给出了一个变形,实际上是更强的结果,将 min ⁡ ( y , ξ ) \min(y,\xi) min(y,ξ) 替换为形如
Y ( y , ξ ) = { ξ , if &ThickSpace;&ThickSpace; ξ &lt; y − r ( ξ − y ) + y , if &ThickSpace;&ThickSpace; ξ ≥ y Y(y,\xi)= \begin{cases} \xi ,&amp; \text{if}\;\; \xi&lt;y \\ -r(\xi-y)+y, &amp; \text{if}\;\; \xi\ge y \end{cases} Y(y,ξ)={ξ,r(ξy)+y,ifξ<yifξy 的函数。
在这里插入图片描述
参考文献

[1] Scarf et al., A min-max solution of an inventory problem, Studies in the Mathematical Theory of Inventory and Production,201-209 (1958)
[2] Hiroshi, A min-max solution of an inventory problem, (1959)

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zte10096334

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值