【PSO】量子粒子群算法(QPSO)

文章介绍了粒子群算法的三种改进形式:离散粒子群算法使用sigmoid函数更新速度;混沌粒子群算法引入混沌序列优化;量子粒子群算法利用波函数和蒙特卡罗方法确定粒子位置,并通过平均最好位置mbest进行优化。提供了MATLAB实现的参考资料链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

粒子群算法的几个比较大的改进:

(1)离散粒子群算法:粒子搜索位置为0-1离散值,速度更新公式通过sigmoid函数得到概率值p,决定当前位置的参数是0还是1;

(2)混沌粒子群算法:由确定的方程得出不确定的方程,呈不确定状态的变量成为混沌变量。在混沌粒子群算法中,以全局最优解gbest迭代产生混沌序列,混沌序列通过方程映射回原解空间,序列中最优位置随机替代某个粒子的位置,叫做混沌优化。

(3)量子粒子群算法:因为粒子的位置和速度在量子空间中不能一起确定,所以用波函数表示粒子位置,通过蒙特卡罗方法求出粒子位置。gbest求解通过平均最好位置mbest得到。mbest是所有个体平均最优,通过它来求解粒子出现在相对点的位置,用L表示。而粒子的势表示位置的最终值,与L直接相关。

量子粒子群算法实现(matlab):

popsize=20;    %种群规模
MAXITER=2000;   %最大迭代次数
dimension=30;   %维数
irange_l=-5.12;  
irange_r=5.12;
xmax=10;        %x的变化范围

sum1=0;
sum2=0;
mean=0;
st=0;
runno=10;
data1=zeros(runno,MAXITER);   %10*2000型矩阵
for run=1:runno
T=cputime;         %程序开始时间
x=(irange_r- irange_l)*rand(popsi
评论 24
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值