近年,以卷积神经网络为代表的深度学习模型在很多计算机视觉任务中都取得了相当大的成功,如目标检测、图像分类、语义分割等等。然而,大部分深度学习模型对于数据和标注的需求是海量的,在一些特殊的领域应用,可能存在一定的“水土不服”,如医疗、工业。这些领域由于其特殊性,无法提供海量的精准标注数据,以支持深度学习模型的训练。因此,研究者们提出了一些机制(小样本学习、注意力机制)或者独特网络结构,以解决在少量样本下,特征无法有效表征的问题。
因此,本文以此问题为导向,从研究者们针对这个问题的解决方法来对近期的一些文章做搜索的展示。【不间断更新】
【1】An Efficient CNN Model Based on Object-level Attention Mechanism for Casting Defects Detection on Radiography Images
(基于目标级注意力机制的高效CNN模型及其在射线图像中的铸件缺陷检测应用)
铸件缺陷的自动检测是数字射线照相(DR)缺陷检测自动化的一项重要技术。传统上,在工业应用中,当复杂场景中检测目标较小、局部和细微时,传统的方法效率低下。同时,CNN的精确数据量(如CNN的卷积模型)有限。为了克服这些挑战,首次提出了一种有效的CNN模型,该模型只需训练图像级的标签,用于复杂工业场景中微小铸件缺陷的检测。在此基础上,提出了一种新的训练策略,在训练阶段对模型形成一种新的对象级注意机制,并利用双线性池来提高模型检测局部对比铸造缺陷的能力。此外,为了提高模型的可解释性,我们将类激活映射(CAM)扩展到适合双线性体系结构的双线性CAM(Bi-CAM),作为一种可视化技术来描述模型输出的原因。实验结果表明,所提出的模型在各个量化指标上都取得了优异的性能,适用于大多数实际应用。在复杂场景下,有效地实现了铸件缺陷的实时检测。