搬运——证明线性空间中,平面方程的系数就是平面的法向量

本文详细解析了平面方程的一般形式及其法向量的确定方法。通过实例演示了如何验证平面上两点构成的矢量与平面法向量垂直的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近,有所疑惑,网上查找,找到有一个相关回答,所以此处记录。

找自:https://zhidao.baidu.com/question/461037831369263405.html


  • 变换方程为一般式Ax+By+Cz+D=0,平面的法向量为(A,B,C)。

  • 证明:设平面上任意两点P(x1,y1,z1),Q(x2,y2,z2)

    (1) 满足方程:Ax1+By1+Cz1+D=0,Ax2+By2+Cz2+D=0

    (2)PQ的矢量为(x2-x1,y2-y1,z2-z1),该矢量满足A(x2-x1)+B(y2-y1)+C(z2-z1)=0

    (3)矢量PQ⊥矢量(A,B,C)

    (4)平面上任意直线都垂直于矢量(A,B,C)

    (5)矢量(A,B,C)垂直于该平面

    (6)平面的法向量为(A,B,C)

  • 平面方程:空间中处在同一平面的对应的方程。而平面是最简单、最常用的一种特殊曲面。

  • 平面方程的一般式:Ax+By+Cz+D=0,其中A,B,C,D为已知常数,并且A,B,C不同时为零。


此处第(3)步我刚看的时候有疑惑,想为什么PQ就垂直于(A,B,C)。

然后再回看(2)步,这个式子就是两个向量的点积公式,点积为0,所以向量垂直。


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值