OpenCv 之(图片人脸识别)和 (摄像头读入)

先来张人脸识别效果图:

这里写图片描述

1、概述

人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部的一系列相关技术,通常也叫做人像识别、面部识别。

2、人脸识别步骤

1    人脸图像采集及检测
2    人脸图像预处理
3    人脸图像特征提取以及匹配与识别

3、 人脸识别的方法

在OpenCV中主要使用了两种特征(即两种方法)进行人脸检测,Haar特征和LBP特征。使用已经训练好的XML格式的分类器进行人脸检测。在OpenCV的安装目录下的sources文件夹里的data文件夹里可以看到下图所示的内容(opencv\sources\data\haarcascades ):

这里写图片描述

文件夹的名字“haarcascades”、“hogcascades”和“lbpcascades”分别表示通过“haar”、“hog”和“lbp”三种不同的特征而训练出的分类器:"haar"特征主要用于人脸检测,“hog”特征主要用于行人检测,“lbp”特征主要用于人脸识别,“eye”特征主要用于眼睛的检测识别。

实现人脸检测主要依赖于detectMultiScale()函数,下面简单说一下函数参数的含义,先看函数原型:
CV_WRAP virtual void detectMultiScale( const Mat& image,  
                                   CV_OUT vector<Rect>& objects,  
                                   double scaleFactor=1.1,  
                                   int minNeighbors=3, int flags=0,  
                                   Size minSize=Size(),  
                                   Size maxSize=Size() );  
各参数含义:
const Mat& image: 需要被检测的图像(灰度图)
vector<Rect>& objects: 保存被检测出的人脸位置坐标序列
double scaleFactor: 每次图片缩放的比例
int minNeighbors: 每一个人脸至少要检测到多少次才算是真的人脸
int flags: 决定是缩放分类器来检测,还是缩放图像
Size(): 表示人脸的最大最小尺寸

4、源代码分析

(1)检测图片中的人脸

#include <iostream>
#include <opencv2/opencv.hpp>
#include <opencv2/calib3d/calib3d.hpp>

using namespace std;
using namespace cv;

int main()
{
    Mat image, image_gray;      //定义两个Mat变量,用于存储每一帧的图像

    image = imread("F://1.png");
    imshow("原图", image);

    cvtColor(image, image_gray, CV_BGR2GRAY);//转为灰度图
    equalizeHist(image_gray, image_gray);//直方图均衡化,增加对比度方便处理

    CascadeClassifier eye_Classifier;  //载入分类器
    CascadeClassifier face_cascade;    //载入分类器

    //加载分类训练器,OpenCv官方文档提供的xml文档,可以直接调用
    //xml文档路径  opencv\sources\data\haarcascades 
    if (!eye_Classifier.load("F:\\haarcascade_eye.xml"))  //需要将xml文档放在自己指定的路径下
    {  
        cout << "Load haarcascade_eye.xml failed!" << endl;
        return 0;
    }

    if (!face_cascade.load("F:\\haarcascade_frontalface_alt.xml"))
    {
        cout << "Load haarcascade_frontalface_alt failed!" << endl;
        return 0;
    }

    //vector 是个类模板 需要提供明确的模板实参 vector<Rect>则是个确定的类 模板的实例化
    vector<Rect> eyeRect;
    vector<Rect> faceRect;

    //检测关于眼睛部位位置
    eye_Classifier.detectMultiScale(image_gray, eyeRect, 1.1, 2, 0 | CV_HAAR_SCALE_IMAGE, Size(30, 30));
    for (size_t eyeIdx = 0; eyeIdx < eyeRect.size(); eyeIdx++)
    {   
        rectangle(image, eyeRect[eyeIdx], Scalar(0, 0, 255));   //用矩形画出检测到的位置
    }

    //检测关于脸部位置
    face_cascade.detectMultiScale(image_gray, faceRect, 1.1, 2, 0 | CV_HAAR_SCALE_IMAGE, Size(30, 30));
    for (size_t i = 0; i < faceRect.size(); i++)
    {   
        rectangle(image, faceRect[i], Scalar(0, 0, 255));      //用矩形画出检测到的位置
    }

    imshow("人脸识别图", image);         //显示当前帧
    waitKey(0);

}

return 0;
}

(2)检测摄像头中的人脸

#include <iostream>
#include <opencv2/opencv.hpp>
#include <opencv2/calib3d/calib3d.hpp>

using namespace std;
using namespace cv;

int main()
{
    Mat image, image_gray;      //定义两个Mat变量,用于存储每一帧的图像
    VideoCapture capture(0);    //从摄像头读入视频

    while (1)                  //循环显示每一帧
    {
        capture >> image;     //读取当前帧

        //image = imread("F://1.png");
        //imshow("原图", image);

        cvtColor(image, image_gray, CV_BGR2GRAY);//转为灰度图
        equalizeHist(image_gray, image_gray);//直方图均衡化,增加对比度方便处理

        CascadeClassifier eye_Classifier;  //载入分类器
        CascadeClassifier face_cascade;    //载入分类器

        //加载分类训练器,OpenCv官方文档提供的xml文档,可以直接调用
        //xml文档路径  opencv\sources\data\haarcascades 
        if (!eye_Classifier.load("F:\\haarcascade_eye.xml"))  //需要将xml文档放在自己指定的路径下
        {  
            cout << "Load haarcascade_eye.xml failed!" << endl;
            return 0;
        }

        if (!face_cascade.load("F:\\haarcascade_frontalface_alt.xml"))
        {
            cout << "Load haarcascade_frontalface_alt failed!" << endl;
            return 0;
        }

        //vector 是个类模板 需要提供明确的模板实参 vector<Rect>则是个确定的类 模板的实例化
        vector<Rect> eyeRect;
        vector<Rect> faceRect;

        //检测关于眼睛部位位置
        eye_Classifier.detectMultiScale(image_gray, eyeRect, 1.1, 2, 0 | CV_HAAR_SCALE_IMAGE, Size(30, 30));//检测
        for (size_t eyeIdx = 0; eyeIdx < eyeRect.size(); eyeIdx++)
        {   
            rectangle(image, eyeRect[eyeIdx], Scalar(0, 0, 255));   //用矩形画出检测到的位置
        }

        //检测关于脸部位置
        face_cascade.detectMultiScale(image_gray, faceRect, 1.1, 2, 0 | CV_HAAR_SCALE_IMAGE, Size(30, 30));//检测
        for (size_t i = 0; i < faceRect.size(); i++)
        {   
            rectangle(image, faceRect[i], Scalar(0, 0, 255));      //用矩形画出检测到的位置
        }

        imshow("人脸识别图", image);         //显示当前帧
        char c = waitKey(30);         //延时30ms,即每秒播放33帧图像
        if (c == 27)  break;    
    }

    return 0;
}

效果图:
这里写图片描述

人脸识别源代码下载链接

阅读更多
个人分类: 学习OpenCv系列
上一篇形态学滤波(2):开运算、闭运算、形态梯度、顶帽、黑帽
下一篇基于OpenCv的边缘检测_Canny算子
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭