通过高阶DMD对地铁的实时短时OD预测

1. 文章信息

文章题目为《Real-Time Forecasting of Metro Origin-Destination Matrices with High-Order Weighted Dynamic Mode Decomposition》,是一篇发表在Transportation Science上的有关实时地铁OD预测的文章。

2. 摘要

预测不同起点-终点对(即OD矩阵)的短期乘客量对地铁系统的实时运行至关重要。然而,由于OD矩阵的大规模、高维、噪声和高度倾斜的性质,导致OD预测十分困难。文章通过估计低秩、高阶的向量自回归(VAR)模型来解决短期OD矩阵预测问题。文章将这个问题重构为一个数据驱动的降阶回归模型,并使用动态模式分解(DMD)对其进行估计。为了解决地铁OD矩阵无法实时观测的实际问题,文章使用进站需求替换无法获取的OD矩阵。此外,文章还考虑了地铁系统的时间演化特征,并通过指数降低历史数据的权重来改善预测。然后,针对高阶加权DMD模型(HW-DMD),开发了一种定制的在线更新算法,在不存储历史数据或重新训练的情况下,每天更新模型系数。对两个大型地铁系统的数据进行的实验表明,HW-DMD对噪声和稀疏数据具有鲁棒性,在预测OD矩阵和上车流量方面显著优于基线模型。在线更新算法在很长一段时间内也显示出一致的准确性,使我们能够以非常低的成本维护HW-DMD模型。文章的贡献主要为以下三点:

  1. 文章提出了一种HW-DMD模型,解决了实时地铁OD矩阵预测的各种困难。实验表明,HW-DMD模型的预测效果明显优于现有模型。

  2. 交通系统的时间演化动力学和预测模型的维护/更新在文献中经常被忽略。文章通过减少过去数据的权重来考虑地铁系统的时间演化特性,并显示出改进的性能。为了降低HW-DMD模型在时间演化地铁系统中的长期维护成本,提出了一种在线更新算法。

  3. 针对具有外部协变量的大规模高阶向量自回归模型,文章提出了一种基于DMD的估计和在线更新算法。基于DMD的估计为数据生成最佳拟合线性算子,尤其适用于具有低秩属性的高维数据的预测。

3. 问题陈述

许多现代地铁系统使用智能卡记录乘客的进出信息。因此,可以从数据中获取在这样一个系统中每次旅行的起点和终点站,以及开始和结束时间。给定一个固定的时间间隔(本文中为30分钟),文章用表示在第t个时间间隔从i站到j站的行程数,并称为OD流。接下来,通过OD矩阵描述系统中每个OD对在第t个时间间隔内的行程数,其中s代表地铁站点的数目。

4a7bcca84f43234f5e55aa44e22f7b3d.png

矩阵中对角元素始终为零,文章保留这些零元素,因为它们对预测的影响可以忽略不计。在文章的模型中,OD矩阵以向量形式组织,如下式所示,其中n=s*s。

371a6ca004362d4da6b6cea72892fe2c.png

在文章中,ft也被称之为OD快照。值得注意的是,OD快照是按乘客进入系统的时间进行聚合的;退出时间可能在不同的时间间隔内。因此,只有在以间隔t进入的所有乘客到达目的地后,才能获得间隔t的真实OD快照;无法实时观察(即延迟的数据可用性)。换句话说,在预测ft+1时,通常无法访问ft。相比之下,进站流量是可以实时观察到的。文章用表示时间间隔t内进入i站的乘客数量。文章利用进站客流(进展快照)替换无法获取的OD快照,将OD矩阵预测问题转化为,预测未来的OD快照ft+1、ft+2、ft+L,给定一系列可用的历史OD快照f1、f2、ft和进站快照b1、b2、bt。

4. 模型定义

动态模式分解(Dynamic Mode Decomposition)

动态模式分解(DMD)由流体动力学界开发,用于从高维数据中提取动态特征。文章将OD快照排列成m列矩阵,如下所示,其中m<<n。

d86ab3b1cd5881a1d6f4ca98fb39a80a.png

线性动力系统遵循Yt≈AYt-1。实际的DMD通过以下程序寻找最佳拟合线性算子A的主要特征值和特征向量。

1.计算Yt-1的截断奇异值分解,如下式所示,其中,586822d77738892ac6f90ae51c21d7f2.pngb2c751c08a455221271c95fef1761664.png

2ce5fa072b0f36f606836e66d607ac01.png

2.为了避免计算矩阵A,文章定义了一个新矩阵,如下式所示。

2fc52793042a9effb147c7968c12908a.png

3.计算特征值分解,ef7eb57486c45d0095552ad0fac31d4a.png

4.DMD模式通过8b55b9f0a97c2d5a57c777a92fdc1db0.png获得。

下图,展示了广州地铁10天时间的Yt-1奇异值。可以看到几个前导奇异值解释了很大一部分方差,证实了OD快照数据的低秩特征。因此,基于DMD的模型可以大大降低这种动态系统的维数/复杂性。然而,精确的DMD对于OD流量预测问题有一定的局限性。为了解决这些问题,文章提出了高阶加权的DMD模型。

11934c0a2a4a35b19e6bb8aeae4ff53c.png

高阶加权动态模式分解(High-Order Weighted Dynamic Mode Decomposition)

模型说明:

精确DMD的预测公式相当于一阶高维向量自回归。然而,最新的OD快照在预测时是未知的。因此,文章使用的两个最新的进站快照作为替代,认为三个或更多时间间隔前的OD快照可用,这是由于文章所使用的数据集中超过96%的行程在一小时内完成(两个滞后)。文章使用高阶向量自回归来捕捉OD快照中的长期相关性。预测模型如下所示。

ba5675307737072411136e698874a88a.png

进一步,将上式用矩阵形式表示,如下图所示,设m=t-qh。

b8c77b02963d89f7076fbf5b876b587e.png

接着,文章引入了遗忘率ρ(一个介于0-1的数),通过不同的权重给已经过去的时间,以指数方式减少历史数据的权重,从而减小更新参数时内存的占用。上述矩阵形式表示中的Gt可以通过如下优化问题获得。

7a6a7a55cd3274544f54ccaee075de86.png

进一步,为了方便,文章定义55339f8334a6e7f3d1dce9e4b7e19c45.png,Yt和Xt可以由下式表示。

1fe2e01db663be05b3bbeeaeb85dc14e.png

优化问题(5)也可以改写为最小二乘问题。

03e5f15bf0f834d67869446f30f6c122.png

至此,可以给出模型的整体框架,如下图所示。

0404e31bda49641196088aeb0f0bcc95.png

模型估计:

与DMD类似,首先计算的截断奇异值分解,由于部分奇异值就可以很好的表述所有数据,因此可以用于估计系数矩阵,如下所示。

89ca56fd1582626735111727d8aa1b98.png

但式(7)与式(9)仍然难以直接进行运算,文章提出寻找一种映射:07ec686ff7a5281bf96c2da702033925.png,其中rY<<n。在此过程中,计算目标矩阵的另一秩rY的截断奇异值分解98cfc4a91be6d775d0c87da00c811c34.png。其中Uy的列构成正交基。因此,映射1e2925668b996ebc493fc757db1c184d.png能够将数据映射到一个更低维的空间中,减少了计算量。同样,可以将系数矩阵映射到低维空间中,如下式所示。

868363e10e233b3d803af9c8d413891a.png

至此,可以将模型在一个降阶的子空间中重写,如下式所示。

4528f11e0a64f04b32e8b7b6e5cb4bfd.png

在线更新:

为了阐述在线更新算法,文章进行了如下变量定义。

f5f2e3aa52fbad57e09df2702975cba6.png

将公式(7),也就是稀疏矩阵Gt修改为如下形式。

22f10afa665228e703aeaa1c0a41f833.png

因此,公式(9)、(10)也可以修改为如下形式。

69fe12a5a6ad910cfd0fc104e0945714.png

此外,文章定义了一个附加的矩阵,6dfc61306be0fa7bad97f550f999a91f.png。通过P、Qx、Qy三个矩阵,以及两个投影矩阵Ux、Uy可以表述模型的所有参数。接着,文章给出了两个定理,如下图所示。

c24c09e5559a0f0b1541bf93c87e4061.png

942d430efe197de663254f6d18dcb03e.png

定理1用于以节省内存的方式更新核心矩阵。定理2表明,可以使用Qy的特征向量来逼近左奇异向量。根据上述两个定理,在线更新策略分为以下三个步骤:1、扩张投影矩阵Ux、Uy;2、通过定理1更新核心矩阵P、Qx、Qy、Ux、Uy;3、通过定理2对核心矩阵进行压缩、降维。

5. 实验

文章使用广州和杭州两个城市的地铁智能卡数据检查HW-DMD,且文章只关注工作日,并未考虑周末。

下表展示了OD预测的结果。

f773992b34474be88476aae0453ed961.png

下表展示了进站客流预测的结果。

881b19700d2e55f8fbb3a6743cd7a350.png

下图中的面板(a)和(c)显示了一天中不同时间的预测RMSE。我们可以看到,HW-DMD的RMSE在大多数时隙中最小,尤其是对于杭州数据集。其他模型,如Conv-LSTM,在清晨和深夜表现稍好,但差异很小,这些时段的总网络OD流量非常小。图中(b)和(d)显示了具有不同流量量级的OD对的预测RMSE。HW-DMD的预测RMSE大大低于高流量OD对的其他模型(平均半小时OD流量大于24)。值得一提的是,OD对的数量随着OD流量的增加呈指数下降,这表明HW-DMD对高度倾斜的数据具有优越的预测能力。

649efab4ccd0cc6d4ead94c2fed478ad.png

下图展示了广州地铁四个典型OD对OD流量的真实和一步预测。OD流量表现出明显的每日周期性,这解释了为什么HA已经运行良好。与FNN相比,HW-DMD更能预测高流量OD对的波动,如图中的(a)和(b)所示。在(a)中,HW-DMD的预测值通常低于实际值;这是很难避免的,因为在收集真实OD流量时存在两个滞后延迟。系统中的更多OD对类似于中的面板(c)和(d),流量低但噪音高。在如此高的波动性下,HW-DMD的预测反映了平稳的平均值。事实上,其他模型的性能往往会受到噪声的影响。总的来说,HW-DMD在预测和降噪之间取得了很大的平衡,这对于具有不同流量大小的高维系统来说尤其困难。

9d41d24c92d3b165da8ca987cd1c53bf.png

进一步,文章分析了低秩假设的影响。图中显示了这种低秩近似与原始数据的拟合程度。可以看到,低秩近似为(a)中的高需求OD对保留了大部分信息。相比之下,(b)中稀疏需求OD对中的大多数波动被截断。通过与HA的比较,可以看到,低秩近似反映了稀疏需求OD对的平均日模式,考虑OD对的累积效应时,这是一个合理的近似。因此,秩截断对于过滤大量稀疏需求OD对中的噪声至关重要。

e5be2d48545234db27feb0a6a6f3245c.png

下表进一步定量评估了原始OD数据与其低秩近似值之间的差异。

c4aec21ce74e1f4e03fd3d5481f7dd74.png

接着,文章分析了在线更新策略的影响,总结如下。

  • 常数模型的RMSE随时间逐渐增加。这表明地铁系统的动态是随时间变化的;因此,预测模型应该定期更新/再训练,以获得更好的性能。

  • 在线更新算法的RMSE曲线与每天由整个历史数据重新训练的模型(ρ=0.92)保持一致,表明在线HW-DMD更新算法在长期应用中始终运行良好。对于大型培训集(如图中的9月之后),在线更新方法甚至比再培训略好。

  • 适当减少旧数据的权重可以改善预测。比较ρ=0.92与ρ=1。两个再训练的模型;随着训练数据的增加,遗忘旧数据的好处变得更加显著。

  • 某些工作日的OD流量可能更难预测,尤其是对9月的预测。周五的RMSE显著高于其他工作日。

a46de408fe734e4b4b66110623a84a3d.png

6. 总结

文章提出了一种高阶加权动态模式分解(HW-DMD)模型来解决地铁系统的实时短期OD矩阵预测问题。实验表明,在高维、稀疏、噪声和偏斜OD数据下,HW-DMD模型的预测性能明显优于常用的预测模型。文章解决了延迟数据可用性问题和地铁系统的时间演化动力学,这在文献中经常被忽略。在处理时间演化系统时,遗忘率和在线更新的思想也有利于其他预测模型。此外,HW-DMD的实现简单,计算效率高,为一般的高维时间序列预测问题提供了一个有前途的解决方案。

Attention

欢迎关注微信公众号《当交通遇上机器学习》!如果你和我一样是轨道交通、道路交通、城市规划相关领域的,也可以加微信:Dr_JinleiZhang,备注“进群”,加入交通大数据交流群!希望我们共同进步!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

当交通遇上机器学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值