关注微信公众号《当交通遇上机器学习》,
后台回复“数据”即可获取高达175G的四个月的滴滴GPS数据和滴滴订单数据的获取方式,以及从数据处理(Oracle数据库)、模型构建(机器学习)、编程实现(python)到可视化(ArcGIS)等一系列视频教程。
后台回复“纽约”获取美国纽约10年的出租车轨迹数据以及7年的共享单车轨迹数据下载地址。
公众号以交通大数据为主线,专注于人工智能、机器学习、深度学习在道路交通和轨道交通领域内的科研前沿与应用,在交通大数据与机器学习的道路上越走越远!
ConvLSTM参数详解
1、最重要的输入尺寸和输出尺寸
以data_format='channels_last'为例:
输入尺寸:输入 5D 张量,尺寸为: (samples,time, rows, cols, channels)。即要提前将训练集和测试集reshape成如上形式的tensor张量,例如下图:
输出尺寸:如果 return_sequences,返回 5D 张量,尺寸为:(samples, timesteps, output_row, output_col, filters)。 否则,返回 4D 张量,尺寸为:(samples, output_row, output_col, filters)。(o_row 和 o_col 取决于 filter 和 padding 的尺寸)
注意:假如上一层是ConvLSTM2D layer,那么其输出为以上形式的4D张量或5D张量,当后面再接另外一个layer时,就要考虑该layer是否能接受4D张量或5D张量(即要考虑ConvLSTM2D的输出能否作为该layer的输入)
2、参数
ConvLSTM2D是一个LSTM网络,但它的输入变换和循环变换是通过卷积实现的如下图。其很多参数的理解上也可参考LSTM。
共25个参数,以下图为例对几个常用的参数进行解释,其他的请查阅Keras官网。
keras.layers.ConvLSTM2D(filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, activation='tanh', recurrent_activation='hard_sigmoid', use_bias=True, return_sequences=False, stateful=False, dropout=0.0, recurrent_dropout=0.0)
- filters: 卷积核的数目(也就是下图中的两个filter W0和W1,也可以理解为输出的维度即两个绿色的框,filter0对应上面的绿色框,filter1对应下面的绿色的框)
- kernel_size:卷积核大小,上图中filterW0的宽和高(单个整数或由两个整数构成的list/tuple,卷积核的宽度和长度。如为单个整数1,则表示kernel_size=(1×1)。)
- strides=(1, 1):为卷积的步长,即卷积核向右和向下一次移动几格,对应图中最左列蓝色3×3网格向右和向下移动的步长。(单个整数或由两个整数构成的list/tuple,为卷积的步长。如为单个整数,则表示在各个空间维度的相同步长。)
- padding:补0策略,为“valid”或 “same” 。要对所有的像素点进行处理就用same,same也是通用的,很少有用valid的。( “valid”代表只进行有效的卷积,即对边界数据不处理。“same”代表保留边界处的卷积结果,通常会导致输出shape与输入shape相同。)
- data_format: 即红绿蓝三个通道(channel)是在前面还是在后面, channels_last (默认) (width, height, channel)或 channels_first (channel, width, height) 之一, 输入中维度的顺序。
- activation:激活函数,即下图中的RELU层,为预定义的激活函数名,如果不指定该参数,将不会使用任何激活函数(即使用线性激活函数:a(x)=x)
- recurrent_activation: 用于循环时间步的激活函数
(recurrent_activation 是针对于 input/forget/output 三个gate的激活函数. activation 是针对于 cell state 和 hidden state的激活函数. 下面所有参数带recurrent和不带recurrent的区别和此处相同)
- use_bias: 布尔值,是否使用偏置项
- return_sequences: 布尔值。是返回输出序列中的最后一个输出,还是全部序列。为true的话下图中1到5全部输出,为false的话下图中只输出红框中的5。
- stateful: 布尔值 (默认 False)。 如果为 True,则批次中索引 i 处的每个样品的最后状态 将用作下一批次中索引 i 样品的初始状态。对stateful的理解请看下图。Stateful为true时,训练和测试时的batch size必须得相同,且样本数目必须得能被batch size整除。
- dropout: 在 0 和 1 之间的浮点数。 单元的丢弃比例,用于输入的线性转换,防止过拟合。
- recurrent_dropout: 在 0 和 1 之间的浮点数。 单元的丢弃比例,用于循环层状态的线性转换。