任务描述
本关任务:掌握一阶推理相关知识并完成习题。
相关知识
为了完成本关任务,你需要掌握:1. 量词推理与命题化;2. 合一与提升;3. 前向链接算法与反向链接算法;4. 归结。
量词推理与命题化
全称量词实例化(UI):可以用任何常数项置换变量得到语句。
V是变量,g是常数基项,α是语句。
存在量词实例化:对于语句α,变量V和常数符号k,只要ki没有在知识库的其他地方出现过。
合一与提升
合一算法Unify:以两条语句p,q为输入。
合一置换存在则返回它们的合一置换:
Unify(p,q)=θ 满足 SUBST(θ,p)= SUBST(θ,q)
一般性假言推理规则(GMP):对于原子语句pi, pi’和q,存在置换θ使得所有的i都有SUBST(θ, pi’)= SUBST(θ, pi)。
前向链接算法与反向链接算法
前向链接算法:从知识库的原子语句出发,在前向推理中应用假言推理规则,增加新的原子语句,直至不能进行任何推理。
前向链接算法是可靠的,完备的。对于含有涵词的一般确定子句,前向链接算法可以生成无限多的新事实,因而算法有时无法终止。
反向链接算法:从目标开始反向推导链接规则,以找到支持证明的已知事实。
归结
一阶逻辑的合取范式:
消除蕴含词
将否定符号内移
变量标准化:每一个量词应该使用不同的符号
Skolem 化:消除存在量词
删除全称量词
将∧分配到∨中
归结推理规则:
开始你的任务吧,祝你成功!