数据仓库分层架构

本文介绍了数据仓库的分层架构,包括数据引入层(ODS)、数据公共层(CDM)和数据应用层(ADS)。ODS层存放原始数据,CDM层进行数据加工与整合,构建一致性维度和公共粒度的指标,ADS层则存放数据产品个性化的统计指标。分层架构有助于清晰数据结构,便于数据血缘追踪,减少重复开发,并简化复杂问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

​一.分层实现

数据仓库一般分为三层,自上而下分别为数据引入层(ODS,Operation Data Store)、数据公共层(CDM,Common Data Model)和数据应用层(ADS,Application Data Service)。

1.ODS层

      存放未经过处理的原始数据至数据仓库系统,结构上与源系统保持一致,是数据仓库的数据准备区

2.CDM层

       数据公共层CDM(Common Data Model,又称通用数据模型层),包括DIM维度表、DWD和DWS,由ODS层数据加工而成。主要完成数据加工与整合,建立一致性的维度,构建可复用的面向分析和统计的明细事实表,以及汇总公共粒度的指标

  • 公共维度层(DIM):基于维度建模理念思想,建立整个企业的一致性维度。降低数 据计算口径和算法不统一风险。

公共维度层的表通常也被称为逻辑维度表,维度和维度逻辑表通常一一对应。

  • 公共汇总粒度事实层(DWS):以分析的主题对象作为建模驱动,基于上层的应用和产品的指标需求,构建公共粒度的汇总指标事实表,以宽表化手段物理化模型。构建命名规范、口径一

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大数据私房菜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值