全方位解读星型模型,雪花模型及星座模型

本文详细介绍了商业智能中常见的三种数据模型:星型模型、雪花模型和星座模型。星型模型简单高效,适用于大数据处理;雪花模型通过层次化维度表减少数据冗余,提高查询性能;星座模型则是多张事实表共享维度表,用于复杂数据关系。文章还对比了三种模型的优缺点,并指出在实际设计中可结合它们的优点进行优化。
摘要由CSDN通过智能技术生成

​1背景

         在多维分析的商业智能解决方案中,根据事实表和维度表的关系,又可将常见的模型分为星型模型,雪花型模型及星座模型。在设计逻辑型数据的模型的时候,就应考虑数据是按照星型模型,雪花型模型还是星座模型进行组织。

 

2星型模型

         星形模型中有一张事实表,以及零个或多个维度表,事实表与维度表通过主键外键相关联,维度表之间没有关联,当所有维表都直接连接到“ 事实表”上时,整个图解就像星星一样,故将该模型称为星型模型。星形模型是最简单,也是最常用的模型。由于星形模型只有一张大表,因此它相比于其他模型更适合于大数据处理。其他模型可以通过一定的转换,变为星形模型。

       星型架构是一种非正规化的结构,多维数据集的每一个维度都直接与事实表相连接,不存在渐变维度,所以数据有一定的冗余,如在地域维度表中,存在国家 A 省 B 的城市 C 以及国家 A 省 B 的城市 D 两条记录,那么国家 A 和省 B 的信息分别存储了两次,即存在冗余。

 

3雪花模型<

⼤数据实践之数据建模 随着DT时代互联⽹、智能设备及其他信息技术的发展,数据爆发式增长,如何将这些数据进⾏有序、有结构地分类组织和存储是我们⾯临的⼀个挑战。 为什么需要数据建模 如果把数据看作图书馆⾥的书,我们希望看到它们在书架上分门别类地放置;如果把数据看作城市的建筑,我们希望城市规划布局合理;如果把数据看作电脑⽂ 件和⽂件夹,我们希望按照⾃⼰的习惯有很好的⽂件夹组织⽅式,⽽不是糟糕混乱的桌⾯,经常为找⼀个⽂件⽽不知所措。 数据模型就是数据组织和存储⽅法,它强调从业务、数据存取和使⽤⾓度合理存储数据。Linux的创始⼈Torvalds有⼀段关于"什么才是优秀程序员"的 话:"烂程序员关⼼的是代码,好程序员关⼼的是数据结构和它们之间的关系",其阐述了数据模型的重要性。有了适合业务和基础数据存储环境的模型,那么 ⼤数据就能获得以下好处。 性能:良好的数据模型能帮助我们快速查询所需要的数据,减少数据的I/O吞吐。 成本:良好的数据模型能极⼤地减少不必要的数据冗余,也能实现计算结果复⽤,极⼤地降低⼤数据系统中的存储和计算成本。 效率:良好的数据模型能极⼤地改善⽤户使⽤数据的体验,提⾼使⽤数据的效率。 质量:良好的数据模型能改善数据统计⼝径的不⼀致性,减少数据计算错误的可能性。 因此,⽏庸置疑,⼤数据系统需要数据模型⽅法来帮助更好地组织和存储数据,以便在性能、成本、效率和质量之间取得最佳平衡。 关系数据库系统和数据仓库 E .F .Codd是关系数据库的⿐祖,他⾸次提出了数据库系统的关系模型,开创了数据库关系⽅法和关系数据理论的研究。随着⼀⼤批⼤型关系数据库商业软件 (如Oracle、Informix、DB2等)的兴起,现代企业信息系统⼏乎都使⽤关系数据库来存储、加⼯和处理数据。数据仓库系统也不例外,⼤量的数据仓库系统 依托强⼤的关系数据库能⼒存储和处理数据,其采⽤的数据模型⽅法也是基于关系数据库理论的。虽然近年来⼤数据的存储和计算基础设施在分布式⽅⾯有了飞 速的发展,NoSQL技术也曾流⾏⼀时,但是不管是Hadoop、Spark还是阿⾥巴巴集团的MaxCompute系统,仍然在⼤规模使⽤SQL进⾏数据的加⼯和处理, 仍然在⽤Table存储数据,仍然在使⽤关系理论描述数据之间的关系,只是在⼤数据领域,基于其数据存取的特点在关系数据模型的范式上有了不同的选择⽽ 已。关于范式的详细说明和定义,以及其他⼀些关系数据库的理论是⼤数据领域建模的基础,有兴趣的读者可以参考相关的经典数据库理论书籍,如《数据库系 统概念》。 从OLTP和OLAP系统的区别看模型⽅法论的选择 OLTP系统通常⾯向的主要数据操作是随机读写,主要采⽤满⾜3NF的实体关系模型存储数据,从⽽在事务处理中解决数据的冗余和⼀致性问题;⽽OLAP系统 ⾯向的主要数据操作是批量读写,事务处理中的⼀致性不是OLAP所关注的,其主要关注数据的整合,以及在⼀次性的复杂⼤数据查询和处理中的性能,因此它 需要采⽤⼀些不同的数据建模⽅法。 典型的数据仓库建模⽅法论 ER模型 数据仓库之⽗Bill Inmon提出的建模⽅法是从全企业的⾼度设计⼀个3NF模型,⽤实体关系(Entity Relationship,ER)模型描述企业业务,在范式理论上符 合3NF。数据仓库中的3NF与OLTP系统中的3NF的区别在于,它是站在企业⾓度⾯向主题的抽象,⽽不是针对某个具体业务流程的实体对象关系的抽象。其具 有以下⼏个特点: 需要全⾯了解企业业务和数据。 实施周期⾮常长。 对建模⼈员的能⼒要求⾮常⾼。 采⽤ER模型建设数据仓库模型的出发点是整合数据,将各个系统中的数据以整个企业⾓度按主题进⾏相似性组合和合并,并进⾏⼀致性处理,为数据分析决策 服务,但是并不能直接⽤于分析决策。 其建模步骤分为三个阶段。 ⾼层模型:⼀个⾼度抽象的模型,描述主要的主题以及主题间的关系,⽤于描述企业的业务总体概况。 中层模型:在⾼层模型的基础上,细化主题的数据项。 物理模型(也叫底层模型):在中层模型的基础上,考虑物理存储,同时基于性能和平台特点进⾏物理属性的设计,也可能做⼀些表的合并、分区的设计等。 ER模型在实践中最典型的代表是Teradata公司基于⾦融业务发布的FS-LDM(Financial Services Logical Data Model),它通过对⾦融业务的⾼度抽象和 总结,将⾦融业务划分为10⼤主题,并以设计⾯向⾦融仓库模型的核⼼为基础,企业基于此模型做适当调整和扩展就能快速落地实施。 维度模型 维度模型是数据仓库领域的Ralph Kimball⼤师所倡导的,他的The Data Warehouse Toolkit-The Complete Guide to Dimensional Modeling是数据仓 库⼯
星型模型雪花模型星座模型是数据仓库中常见的数据模型,它们有一些区别。 1. 星型模型(Star Schema):星型模型是最简单和最常见的数据仓库模型。它由一个中心的事实表(Fact Table)和多个与之关联的维度表(Dimension Tables)组成。事实表包含与业务过程相关的度量(Measurements),而维度表包含描述度量的维度属性(Dimension Attributes)。星型模型具有简单的结构,易于理解和查询,适用于简单的分析场景。 2. 雪花模型(Snowflake Schema):雪花模型星型模型的基础上进行了维度表的规范化。维度表中的属性被进一步分解为多个细分的维度表,形成多层级的结构。这样可以减少数据冗余,提高数据存储效率,但也增加了查询的复杂性。雪花模型适用于具有复杂层次结构和大量维度属性的分析场景。 3. 星座模型(Constellation Schema):星座模型星型模型雪花模型的结合,它允许在一个数据仓库中同时使用多种模型。不同的事实表可以使用不同的数据模型,根据实际需求进行选择。星座模型提供了更大的灵活性和可扩展性,适用于复杂的分析和报表需求。 总结:星型模型是最简单的数据仓库模型雪花模型星型模型的基础上进行了维度表的规范化,星座模型星型模型雪花模型的结合,允许在一个数据仓库中同时使用多种模型。选择适合的数据模型取决于具体的业务需求、数据结构和查询复杂性。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大数据私房菜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值