爬楼梯算法

本文探讨了如何用递归和动态规划解决爬楼梯问题,指出递归方法效率低下,然后介绍了更高效地计算不同爬楼方式的动态规划解决方案。
摘要由CSDN通过智能技术生成

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶?

func climbStairs(n int) int {
	n1,n2,num :=0,0,1
	for i:=1;i<=n;i++{
		n1 = n2
		n2 = num
		num = n1+n2
	}
	return num
}
//递归运行效率低,切耗时长
func climbStairs1(n int) int {
	num :=0
	if n ==1{
		num =1
		return num
	}
	if n==2{
		num =2
		return num
	}
	num = climbStairs(n-1) +climbStairs(n-2)
	return num
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值