爬楼梯算法题

爬楼梯算法题:

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

思路和算法 :

典型的动态规划问题

我们用 f(x)表示爬到第 x 级台阶的方案数,
考虑最后一步可能跨了一级台阶,也可能跨了两级台阶,所以我们可以列出如下式子: f(i)=f(i−1)+f(i−2).

我们可以用「滚动数组思想」来理解,如图所示。
在这里插入图片描述在这里插入图片描述

总结动态规划解题思路

什么样的问题可以使用动态规划?

一个问题能用动态规划来解决,需要满足:

    - 可分解:问题可以被分解为更小的子问题来求解。以此题为例:要走到第i阶,可以由第i-1阶走一步、第i-2阶走两步实现,所以走到第i阶的路径数 = 走到第i-1阶的路径数 + 走到第i-2阶的路径数,也就是说我们将大小为i的问题,分解为了大小为i-1和i-2的子问题,而大小为i-1的子问题可以进一步被分解到更小的子问题,直到小到可以显然求解(大小为0或者1)为止。
    - 无后效性:未来的状态与过去无关。在本题中:任意一条走到i-1或者i-2的路径都提供了一条到达i的路径,不论这条路径是如何走的,对这个结果都没有影响。
    - 最优子结构:一个问题的最优解由子问题的最优解得到。在本题中:最优解其实是全部路径,也就是i的全部路径数是由i-1和i-2的路径数得到的。

对于动态规划问题,我将拆解为如下五步曲,这五步都搞清楚了,才能说把动态规划真的掌握了!

    理解函数表达式以及下标的含义
    
    确定递推公式
    
    函数值如何初始化
    
    确定遍历顺序
    
    举例推导

代码:

/**
 * Created by Martin on 2021/9/2 17:12
 *
 * 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
 * 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
 */

/*
*
思路和算法

我们用 f(x)表示爬到第 x 级台阶的方案数,
* 考虑最后一步可能跨了一级台阶,也可能跨了两级台阶,所以我们可以列出如下式子:
* f(x)=f(x−1)+f(x−2)
*
* */
public class demo {
    public static void main(String[] args) {
        int i = climbStairs(4);
        System.out.println(i);
    }

    public static int climbStairs(int n) {
        if(n == 1) return 1;
        if(n == 2) return 2;
        int[] climb = new int[n + 1];
        climb[1] = 1;
        climb[2] = 2;
        for(int i = 3; i <= n; i++){
            climb[i] = climb[i - 1] + climb[i - 2];
        }
        return climb[n];
    }

}

欢迎点赞关注收藏
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值