- 博客(7)
- 资源 (5)
- 收藏
- 关注
原创 统计学习方法笔记(五)
决策树: 决策树模型呈树形结构,在分类问题中,表示基于特征对实例进行分类的过程,它可以认为是if-then 规则的集合,也可以认为是定义在特征空间与类空间上的条件概率分布。学习时,利用训练数据,根据损失函数最小化的原则建立决策树模型.预测时,对新的数据,利用决策树模型进行分类决策树学习通常包括3 个步骤: 特征选择、决策树的生成和决策树的修剪。 决策树模型由结点和有
2016-07-20 14:29:05 1296
原创 统计学习方法笔记(四)
朴素贝叶斯法:前提:朴素贝叶斯法是建立在贝叶斯定理和特征条件独立假设的基础上的分类方法。 大致流程为:对于给定的训练数据集,首先基于特征条件独立假设学习输入/输出的联合概率分布:然后基于此模型,对给定的输入x. 利用贝叶斯定理求出后验概率最大的输出y。 说白了就是通过贝叶斯公式算出后验概率,哪个大就归为哪一类。 首先引入条件独立性假设:
2016-07-19 14:39:58 387
原创 统计学习方法笔记(三)
K近邻法:(分类回归方法) k 近邻算法简单、直观给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的k 个3比例,这k 个实例的多数属于某个类,就把该输入实例分为这个类。 当K=1时,又称为最近邻算法,这时候就是将训练数据集中与x最邻近点作为x的类。 k近邻法主要考虑三个基本要素——距离度量(就是两个点之间怎么才算相似呢,要给出个距离
2016-07-19 14:16:04 645 2
原创 统计学习方法笔记(二)
(二) 这部分讲的是感知机,简单来说就是二类分类的线性分类模型,是神经网络和支持向量机的基础。 首先给出感知机的定义: 定义1:假设输入空间(特征空间)是X ,输出空间是Y,Y取值为-1或1,输入X 表示实例的特征向量, 对应于输入空间(特征空间〉的点:输出Y表示实例的类别,由输入空间到输出空间的如下函数就称为感知机。
2016-07-19 13:43:02 514
原创 R语言实战笔记(一)
今天开始将之前的笔记写到博客上,希望能写完 (第一章) 首先将第一章的几个函数截图放上来,之后会经常用到,就算记不住也要经常看看。 我一开始也是觉得这些没什么好看的,结果用到的时候就吃亏了,每次都要翻书查看,还有可能写错,所以希望大家在学习这本书的时候,一定不要对这些基础知识懈怠。 特意一点,在查看包的时候
2016-07-18 14:09:57 1187
原创 统计学习方法笔记(一)
之前都是手写笔记,但是由于习惯不好,笔记老是找不到,又有很多人推荐我写博客方便以后查看,所以这几天会将我之前的笔记,一点点的写到这里来,但是由于CSDN的博客设置不是很会用,会很粗糙哦。。。 首先是李航老师的统计学习方法,一直认为是入门的非常经典的一本书,里面的理论知识非常适合新手看。 接下来,是我当时写的一些笔记。 (一)统计学习方法概论 统计学习
2016-07-18 13:10:12 1205
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人