机器学习
Xavier学长
这个作者很懒,什么都没留下…
展开
-
深入剖析PCA(principal components analysis)
1. 问题(为什么要使用PCA) 真实的训练数据总是存在各种各样的问题:1、 比如拿到一个汽车的样本,里面既有以“千米/每小时”度量的最大速度特征,也有“英里/小时”的最大速度特征,显然这两个特征有一个多余。2、 拿到一个数学系的本科生期末考试成绩单,里面有三列,一列是对数学的兴趣程度,一列是复习时间,还有一列是考试成绩。我们知道要学好数学,需要有浓厚的兴趣,所以第二项与第一项强相关,第三...原创 2018-06-25 13:16:18 · 546 阅读 · 0 评论 -
knn算法实例-用knn算法改进约会网站的配对效果
步骤:1、收集数据2、准备数据3、分析数据4、训练算法5、测试算法6、使用算法1、本文使用的数据是海伦收集的约会数据,可以从 https://download.csdn.net/download/zuyuhuo6777/10627552下载。(datingTestSet2.txt)详细代码如下并附有详细解释:#准备数据:从文本文件中解析数据from nump...原创 2018-08-26 15:58:07 · 1006 阅读 · 1 评论 -
k近邻算法(k-nearest neighbor)和python 实现
1、k近邻算法k近邻学习是一种常见的监督学习方法,其工作机制非常简单:给定测试样本,基于某种距离度量找出训练集中与其最靠近的k个训练样本,然后基于这K个"邻居"的信息来进行预测。通常,在分类任务中可使用"投票法",即选择这K个样本中出现最多的类别标记作为预测结果;在回归任务中可使用"平均法”,即将这K个样本的实际值输出标记的平均值作为预测结果,还可以基于距离远近进行加权平均或加权投票。距离...原创 2018-08-20 17:42:22 · 1363 阅读 · 0 评论 -
机器学习中的回归(regression)与分类(classification) 的理解(区别)
举几个例子:一、二、讨论一下时间序列模型三、用通俗一点的话可以概括为:分类和回归的区别在于输出变量的类型。定量输出称为回归,或者说是连续变量预测;定性输出称为分类,或者说是离散变量预测。举个例子:预测明天的气温是多少度,这是一个回归任务;预测明天是阴、晴还是雨,就是一个分类任务。...转载 2018-08-21 15:35:50 · 3153 阅读 · 0 评论 -
window下在anacoda3中安装python版本的xgboost库和实例演示
最近科研用到分类器,师兄们说xgboost很好,于是便了解了一下: xgboost是近年来很受追捧的机器学习算法,由华盛顿大学的陈天奇提出。最近在学习机器学习,所以需要安装这一利器。然而,在网上找了很多安装xgboost的教程,有些方法太复杂,要安装额外的几个软件,有些看着简单但是自己按步骤安装了一遍,进行测试的时候还是没有成功。最近终于发现了一个超级简单的办法,主要是发现了这个网址:...原创 2018-08-21 20:45:12 · 451 阅读 · 0 评论 -
使用Apriori算法进行关联分析
关联分析是一种在大规模数据集中寻找有趣关系的任务。这些关系可以有两种形式频繁项集:经常出现在一块的物品的集合关联规则:暗示两种物品之间可能存在很强的关系Apriori 原理 关联分析 :...原创 2019-01-08 16:19:10 · 324 阅读 · 0 评论 -
机器学习知识点
一、机器学习中常用的评价指标1、https://blog.csdn.net/u013084616/article/details/793528892、https://zh.wikipedia.org/wiki/%E9%9D%88%E6%95%8F%E5%BA%A6%E5%92%8C%E7%89%B9%E7%95%B0%E5%BA%A6...原创 2019-05-14 21:56:53 · 138 阅读 · 0 评论