李宏毅机器学习
Xavier学长
这个作者很懒,什么都没留下…
展开
-
李宏毅机器学习-task1
ML Lecture0-introduction of Machine Learning一、机器学习是什么?Looking for a Function From Data三个步骤:定义-train-挑出最好的二、学习的内容(Learning Map)supervised Learning 需要Training data input/labelsemi-s...原创 2019-05-13 19:05:05 · 237 阅读 · 0 评论 -
李宏毅机器学习-task4
参考:https://note.youdao.com/ynoteshare1/index.html?id=47ee5998b8abe6e51f3a587ba547bbdf&type=note从基础概率推导贝叶斯公式,朴素贝叶斯公式(1)还在研究 学习先验概率与 学习后验概率 参考:https://zhuanlan.zhihu.com/p/26464206...原创 2019-05-25 18:28:00 · 297 阅读 · 0 评论 -
李宏毅机器学习-task2
理解偏差和方差 1.1,偏差:偏差度量了学习算法的期望预测与真实结果的偏离程度,刻画了学习算法本身的拟合能力。也即,偏差(Bias)描述了预测值(估计值)的期望与真实值之间的差距,偏差越大,越偏离真实数据。偏差可看做是“有监督的”,有人的知识参与的一个指标。即:高偏差是欠拟合1.2,方差: 方差度量了同样大小的训练集的变动所导致的学习性能的变化,刻画了数据扰动所造成的...原创 2019-05-16 22:06:16 · 253 阅读 · 0 评论 -
李宏毅机器学习-task3
大作业:按照Homework1_introduction.txt的要求完成这次作业访问我的百度云可以下载数据链接:https://pan.baidu.com/s/1IykfA4Z0-JLLXx9MvDcesg提取码:eselimport numpy as npimport pandas as pdfrom sklearn.preprocessing import S...原创 2019-05-22 13:43:26 · 536 阅读 · 0 评论 -
李宏毅机器学习-task7
参考:https://datawhalechina.github.io/Leeml-Book/#/AdditionalReferences/Entropy1、信息熵熵 (entropy) 这一词最初来源于热力学。1948年,克劳德·爱尔伍德·香农将热力学中的熵引入信息论,所以也被称为香农熵 (Shannon entropy),信息熵 (information entropy)。首先,我们先...原创 2019-06-05 12:43:51 · 266 阅读 · 0 评论 -
李宏毅机器学习-task5
推导LR损失函数 Logistic 函数是一个概率分布函数,即给定某个特定输入,该函数将计算输出为“Success”的概率,即对问题的回答为“Yes”的概率。损失函数: 学习LR梯度下降 Logistic回归模型、最大熵模型可归结为以似然函数为目标函数的最优化问题,通常通过迭代算法求解,它是光滑的凸函数,因此多种最优化的方法都能适用。 常用方法: 梯度下...原创 2019-05-29 21:10:41 · 348 阅读 · 0 评论 -
李宏毅机器学习-task9
利用 Python 结合 Matplotlib 绘制树图形Matplotlib 注释 构造注解树import matplotlib.pyplot as plt绘制属性图,定义文本框和箭头格式以及树结点格式的常量decisionNode = dict(boxstyle="sawtooth", fc="0.8")leafNode = dict(boxstyle="round...原创 2019-06-15 20:05:38 · 309 阅读 · 0 评论 -
李宏毅机器学习-task8
阅读《李航统计学习方法》中p55-p58页 决策树可用于分类与回归问题,本章主要介绍分类树。他采用if-then的规则,用特征对实例进行递归分类,使得呈现树形结构。也可以理解为定义在特征空间与类空间上的条件概率分布,可读性好且分类速度快。通常包含:特征选择、树生成与修剪三步。 决策树模型结构 树形结构组成:结点(内部与叶子)和有向边。内部节点对应特征属性,根据定义的规则,从根...原创 2019-06-10 17:44:26 · 333 阅读 · 0 评论 -
李宏毅机器学习-task10
学习Gini指数学习回归、分类树剪枝1、学习Gini指数基尼指数分类问题中,假设有 个类,样本点属于第 类的概率为 ,则概率分布的基尼指数为:对于给定样本集合 ,其基尼指数为:如果样本集合 根据特征 是否取一可能值 被分割成 和 两部分,则在特征 的条件下,集合 的基尼指数为:使用基尼指数的优点:计算快,因为熵会涉及到大量的对数运算2、学习...原创 2019-06-20 19:03:42 · 316 阅读 · 0 评论