扩展欧几里得算法(求逆元)

扩展欧几里得算法(求逆元)总结

1、在RSA算法生成私钥的过程中涉及到了扩展欧几里得算法(简称exgcd),用来求解模的逆元。

 

2、首先引入逆元的概念:

逆元是模运算中的一个概念,我们通常说 A 是 B 模 C 的逆元,实际上是指 A * B = 1 mod C,也就是说 A 与 B 的乘积模 C 的余数为 1。可表示为 A = B^(-1) mod C。

打个比方,7 模 11 的逆元,即:7^(-1) mod 11 = 8,这是因为 7 × 8 = 5 × 11 + 1,所以说 7 模 11 的逆元是 8。

 

3、在RSA算法中求私钥中的整数d时,需要使得 (e * d ) % m = 1,该方程等价于 e * d = 1 + y * m (y为整数),也等价于 e * d - y * m = 1。

因此求解d的过程就是求解该二元一次方程组(e和m已知,求解d),即求e模m的逆元。

 

4、在使用扩展欧几里德算法求解e模m的逆元前,首先通过证明扩展欧几里得算法来对该算法有一个简单的理解:

引理:存在 x , y 使得 gcd(a,b)=ax+by

证明:

        当 b=0 时,gcd(a,b)=a,此时 x=1 , y=0

        当 b!=0 时,

     设 ax1+by1=gcd(a,b)=gcd(b,a%b)=bx2+(a%b)y2

        又因 a%b=a-a/b*b

        则 ax1+by1=bx2+(a-a/b*b)y2

    ax1+by1=bx2+ay2-a/b*by2

    ax1+by1=ay2+bx2-b*a/b*y2

    ax1+by1=ay2+b(x2-a/b*y2)

   解得 x1=y2 , y1=x2-a/b*y2

   因为当 b=0 时存在 x , y 为最后一组解

   而每一组的解可根据后一组得到

   所以第一组的解 x , y 必然存在

   得证

根据上面的证明,在实现的时候采用递归做法

先递归进入下一层,等到到达最后一层即 b=0 时就返回x=1 , y=0

再根据 x1=y2 , y1=x2-a/b*y2 ( x2 与 y2 为下一层的 x 与 y ) 得到当层的解

不断算出当层的解并返回,最终返回至第一层,得到原解

 

5、使用扩展欧几里德算法的过程如下:

求exgcd(e, m)—>利用欧几里得算法不断递归直到x=1,y=0—>反向递归求出第一层的x和y,x即为e模m的逆元。

 

int ex_gcd(int a, int b, int &x, int &y) {  // 函数返回gcd(a, b)
    if (b == 0) {
        x = 1, y = 0;
        return a;
    }
    int r = ex_gcd(b, a % b, y, x);
    y -= (a / b) * x;
    return r;
}

int main() {
    int a, b, x, y;
    cin >> a >> b;  // 求a关于模b的逆元
    cout << (ex_gcd(a, b, x, y) == 1 ? (x % b + b) % b : -1) << endl;  // -1表示逆元不存在

    return 0;
}

 

 

 

 

  • 25
    点赞
  • 92
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
欧几里得算法是一个用于计算两个整数的最大公约数的算法,扩展欧几里得算法可以在得最大公约数的同时计算出满足贝祖等式 ax + by = gcd(a,b) 的整数解 x 和 y,其中 a 和 b 是输入的整数。 扩展欧几里得算法可用于解模反元素(逆元),其中逆元是指某个整数关于模数的乘法逆元素。 下面是我用C语言实现扩展欧几里得算法逆元的示例代码: ``` #include <stdio.h> int extended_gcd(int a, int b, int *x, int *y) { if (b == 0) { *x = 1; *y = 0; return a; } int x1, y1; int gcd = extended_gcd(b, a % b, &x1, &y1); *x = y1; *y = x1 - a / b * y1; return gcd; } int mod_inverse(int a, int m) { int x, y; int gcd = extended_gcd(a, m, &x, &y); if (gcd != 1) { printf("逆元不存在\n"); return -1; // 逆元不存在 } int inverse = (x % m + m) % m; return inverse; } int main() { int a, m; printf("请输入要逆元的整数a和模数m:"); scanf("%d %d", &a, &m); int inverse = mod_inverse(a, m); if (inverse != -1) { printf("%d关于模数%d的逆元是:%d\n", a, m, inverse); } return 0; } ``` 这是一个简单的扩展欧几里得算法逆元的实现,首先通过`extended_gcd`函数出`a`和`m`的最大公约数,并计算满足贝祖等式的整数解`x`和`y`。如果最大公约数不为1,则逆元不存在。若最大公约数为1,则通过模的方式计算`x`关于模数`m`的逆元。代码中的`mod_inverse`函数用于调用`extended_gcd`函数,并处理逆元不存在的情况。最后,通过用户输入需要逆元的整数`a`和模数`m`,并输出结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值