使用消息队列的优点
- 解耦
通过 MQ,使用Pub/Sub 发布订阅消息这么一个模型,系统之间可以进行解耦。
- 异步
- 削峰
使用消息队列的缺点
-
系统可用性降低
系统引入的外部依赖越多,越容易挂掉。本来 A 系统调用 BCD 三个系统的接口就好了,加个 MQ 进来,万一 MQ 挂了整套系统崩溃的就完了。此时需要考虑如何保证消息队列的高可用。
-
系统复杂度提高
需保证消息没有重复消费、消息丢失的情况、保证消息传递的顺序性等
-
一致性问题
A 系统处理完了直接返回成功,但是 BCD 三个系统中BD 两个系统写库成功了,结果 C 系统写库失败了,导致数据不一致
Kafka、ActiveMQ、RabbitMQ、RocketMQ 对比
特性 | ActiveMQ | RabbitMQ | RocketMQ | Kafka |
---|---|---|---|---|
单机吞吐量 | 万级,比 RocketMQ、Kafka 低一个数量级 | 同 ActiveMQ | 10 万级,支撑高吞吐 | 10 万级,高吞吐,一般配合大数据类的系统来进行实时数据计算、日志采集等场景 |
topic 数量对吞吐量的影响 | topic 可以达到几百/几千的级别,吞吐量会有较小幅度的下降,这是 RocketMQ 的一大优势,在同等机器下,可以支撑大量的 topic | topic 从几十到几百个时候,吞吐量会大幅度下降,在同等机器下,Kafka 尽量保证 topic 数量不要过多,如果要支撑大规模的 topic,需要增加更多的机器资源 | ||
时效性 | ms 级 | 微秒级,这是 RabbitMQ 的一大特点,延迟最低 | ms 级 | 延迟在 ms 级以内 |
可用性 | 高,基于主从架构实现高可用 | 同 ActiveMQ | 非常高,分布式架构 | 非常高,分布式,一个数据多个副本,少数机器宕机,不会丢失数据,不会导致不可用 |
消息可靠性 | 有较低的概率丢失数据 | 基本不丢 | 经过参数优化配置,可以做到 0 丢失 | 同 RocketMQ |
功能支持 | MQ 领域的功能极其完备 | 基于 erlang 开发,并发能力很强,性能极好,延时很低 | MQ 功能较为完善,还是分布式的,扩展性好 | 功能较为简单,主要支持简单的 MQ 功能,在大数据领域的实时计算以及日志采集被大规模使用 |