Kafka高可用
Kafka 一个最基本的架构认识:由多个 broker 组成,每个 broker 是一个节点;你创建一个 topic,这个 topic 可以划分为多个 partition,每个 partition 可以存在于不同的 broker 上,每个 partition 就放一部分数据。
如果用RabbitMQ来理解的话,可以将broker理解为RabbitMQ的每个节点,而每个topic就是一个queue,一个queue可以划分成多个分片,每个分片就是partition。
这就是天然的分布式消息队列,就是说一个 topic 的数据,是分散放在多个机器上的,每个机器就放一部分数据。
Kafka 0.8 以前,是没有高可用机制的,任何一个 broker 宕机了,那个 broker 上的 partition 就废了,没法写也没法读,没有什么高可用性可言。
Kafka 0.8 以后,提供了 HA 机制,就是 replica(复制品) 副本机制。每个 partition 的数据都会同步到其它机器上,形成自己的多个 replica 副本。所有 replica 会选举一个 leader 出来,那么生产和消费都跟这个 leader 打交道,然后其他 replica 就是 follower。写的时候,leader 会负责把数据同步到所有 follower 上去,读的时候就直接读 leader 上的数据即可。
为什么只能读写leader呢?
要是你可以随意读写每个follower,那么就要关心数据一致性的问题,系统复杂度太高,很容易出问题。Kafka 会均匀地将一个 partition 的所有 replica 分布在不同的机器上,这样才可以提高容错性。
如果某个 broker 宕机了,那个 broker上面的 partition 在其他机器上都有副本。如果这个宕机的 broker 上面有某个 partition 的 leader,那么此时会从 follower 中重新选举一个新的 leader 出来,继续读写那个新的 leader ,这就有所谓的高可用性了。