pytorch
嘿芝麻
弱监督目标检测/定位
展开
-
那些年,Pytorh的坑(持续更新)
本博客和大家分享一些本人在使用pytorch时候经历过的一些坑,将持续更新。原创 2018-09-25 18:06:56 · 3053 阅读 · 4 评论 -
从零开始用 PyTorch 实现 YOLO (v3) 是什么体验(五)
大伙儿都会发现YOLO v3论文篇幅少,除去参考文献就四面。为了更好的理解yolov3,本人参考了yolov的pytorch版本的代码,进行网络复现:https://github.com/zhiweichen12/YOLO_v3_tutorial_from_scratch0. 先上打印的节点吧~0 convolutional torch.Size([1, 32, 416, 416])1 co...原创 2018-11-24 19:25:20 · 4173 阅读 · 6 评论 -
从零开始用 PyTorch 实现 YOLO (v3) 是什么体验(四)
从零开始用 PyTorch 实现 YOLO (v3) 是什么体验(四)代码基于 Python 3.5, 和 PyTorch 0.4. 代码发布在 Github repo 上。本体验分为5个部分:第1部分:理解 YOLO 的原理第2部分:创建网络结构第3部分:实现网络的前向传递第4部分(本文):目标分阈值和非极大值抑制第5部分:网络的输入和输出先前准备教程的前3部分关于Py...翻译 2018-11-24 19:11:19 · 1688 阅读 · 0 评论 -
从零开始用 PyTorch 实现 YOLO (v3) 是什么体验(三)
从零开始用 PyTorch 实现 YOLO (v3) 是什么体验(三)代码基于 Python 3.5, 和 PyTorch 0.4. 代码发布在 Github repo 上。本体验分为5个部分:第1部分:理解 YOLO 的原理第2部分:创建网络结构第3部分(本文):实现网络的前向传递第4部分:目标分阈值和非极大值抑制第5部分:网络的输入和输出定义网络如前所述,我们使用 nn....翻译 2018-11-24 19:09:37 · 2867 阅读 · 12 评论 -
从零开始用 PyTorch 实现 YOLO (v3) 是什么体验(二)
从零开始用 PyTorch 实现 YOLO (v3) 是什么体验(二)代码基于 Python 3.5, 和 PyTorch 0.4. 代码发布在 Github repo 上。本体验分为5个部分:第1部分:理解 YOLO 的原理第2部分(本文):创建网络结构第3部分:实现网络的前向传递第4部分:目标分阈值和非极大值抑制第5部分:网络的输入和输出开始首先创建一个存放检测器代码的文...翻译 2018-11-24 19:07:12 · 4299 阅读 · 4 评论 -
从零开始用 PyTorch 实现 YOLO (v3) 是什么体验(一)
从零开始用 PyTorch 实现 YOLO (v3) 是什么体验(一)代码基于 Python 3.5, 和 PyTorch 0.4. 代码发布在 Github repo 上。本体验分为5个部分:第1部分(本文):理解 YOLO 的原理第2部分:创建网络结构第3部分:实现网络的前向传递第4部分:目标分阈值和非极大值抑制第5部分:网络的输入和输出YOLO是神马?YOLO 的全称是...翻译 2018-11-24 19:04:29 · 13381 阅读 · 13 评论 -
Pytorch(五)入门:DataLoader 和 Dataset
DataLoader 和 Dataset构建模型的基本方法,我们了解了。接下来,我们就要弄明白怎么对数据进行预处理,然后加载数据,我们以前手动加载数据的方式,在数据量小的时候,并没有太大问题,但是到了大数据量,我们需要使用 shuffle, 分割成mini-batch 等操作的时候,我们可以使用PyTorch的API快速地完成这些操作。Dataset是一个包装类,用来将数据包装为Datas...原创 2018-09-22 09:57:55 · 292181 阅读 · 89 评论 -
Pytorch(四)入门:多层感知机
使用Tensor来写多层感知机先做一个热身题目,我们使用Tensor构建一个两层神经网络Tips:通常构建一个神经网络,我们有如下步骤1、构建好网络模型2、参数初始化3、前向传播4、计算损失5、反向传播求出梯度6、更新权重在我们构建神经网络之前,我们先介绍一个Tensor的内置函数 clamp()该函数的功能是:clamp(x,low,high )若X在[low,high]范围...原创 2018-09-21 20:12:13 · 7376 阅读 · 22 评论 -
Pytorch(三)入门:线性回归
给定一个数据点集合XXX和对应的目标值yyy,线性模型的目标就是找到一条使用向量www和位移bbb描述的线,来尽可能地近似每个样本X[i]X[i]X[i]和y[i]y[i]y[i]。用数学符号来表示就是:y^=Xw+b\hat{y} = Xw + by^=Xw+b并最小化所有数据点上的平方误差∑i=1n(y^i−yi)2.\sum_{i=1}^n (\hat{y}_i-y_i)^2.i=1...原创 2018-09-21 16:34:43 · 3571 阅读 · 4 评论 -
Pytorch(二)入门:autograd机制
通过调用 backward() 函数,我们自动求出了在 x = 1 的时候的导数 需要注意的一点是:如果我们输入的 Tensor 不是一个标量,而是矢量(多个值)。 那么,我们在调用backward()之前,需要让结果变成标量 才能求出导数。 也就是说如果不将 Y 的值变成标量,就会报错。(可以尝试把mean()给取消,看看是不是报错了)具体相关的细节见下图:以上代码参考:https:...原创 2018-09-21 15:51:24 · 3000 阅读 · 17 评论 -
Pytorch(一)入门:Tensor基础
torch.Tensor 基础Tensor就是pytorch中存储数据的主要格式,跟numpy类似 这里,我们先介绍一些最基本的操作和常用的功能在numpy中,我们是通过shape来获取数组的形状,而在我们的tensor当中,我们使用size来得到形状。有时候,我们需要对数组形状进行改变,我们可以采用 .view() 的方式可以注意到test5通过test4变形的时候,是从tes...原创 2018-09-21 15:23:25 · 17790 阅读 · 0 评论 -
Pytorch 可视化之tensorboardX
使用tensorboardX需要安装tensorflow和tensorboardX,安装语句如下:pip install tensorboardXpip install tensorflow 其核心的语句为三句:from tensorboardX import SummaryWriter writer = SummaryWriter('./log/') # 设置保存的log文件夹...原创 2018-09-26 21:24:16 · 851 阅读 · 0 评论 -
Dilated Convolutions 空洞卷积 pytorch版
from torch import nnimport torch.nn.init as initdef transform(): return Compose([ ToTensor(), # Normalize((12,12,12),std = (1,1,1)), ])arr = range(1,26)arr = np.reshape(ar...转载 2018-12-14 17:48:20 · 12195 阅读 · 5 评论