论文分享
把所看的论文总结,也是一种学习;把所学的论文分享,也是一种快乐。
嘿芝麻
弱监督目标检测/定位
展开
-
Missing Labels in Object Detection(CVPR2019)解读
论文链接:Missing Labels in Object Detection本文主要贡献:在不同丢失程度的instance-level 标签下全监督目标检测(FSOD)的影响。首次提出在全监督和弱监督中间(即:部分监督信息)的训练方式和训练网络。1 在不同丢失程度的instance-level 标签下全监督目标检测(FSOD)的影响1.1 在不同instance-level m...原创 2019-07-09 16:59:47 · 1332 阅读 · 0 评论 -
Utilizing the Instability in Weakly Supervised Object Detection (CVPR2019) 解读
本文主要贡献:通过分析检测器多示例学习(MIL)的不稳定性,提出了An end-to-end frameworkAn online fusion strategy0 检测器多示例学习(MIL)的不稳定性0.1 不同初始化参数的方法会很大程度上影响proposal的置信度如下图前三列,代表不同初始化参数的MIL-based Detector,可以看出不同分类器所给出的proposal不...原创 2019-07-02 16:50:34 · 688 阅读 · 0 评论 -
CornerNet论文解读
文章目录边角点检测边角点聚集Corner Pooling预测模块结构实验结果论文:https://arxiv.org/abs/1808.01244 先简单回忆一下anchor box。利用anchor box进行bbox检测时,我们一般是对大小为W*H的网格进行操作的。网格中的每个位置作为多个anchor box(比如faster rcnn中每个点有9个anchor box)的中心点,然后预...原创 2019-05-07 20:08:05 · 813 阅读 · 0 评论 -
FCOS: Fully Convolutional One-Stage Object Detection论文解读
FCOS: Fully Convolutional One-Stage Object Detection论文:https://link.zhihu.com/?target=https%3A//arxiv.org/abs/1904.01355 Abstract:我们提出了一种全卷积的 one-stage 目标检测器(FCOS),以每像素预测方式解决目标检测,类似于语义分割。几乎所有最先进的目标...原创 2019-04-06 17:00:25 · 2442 阅读 · 0 评论 -
Res2Net论文解读
论文:https://arxiv.org/abs/1904.01169 Abstract:在多个尺度上表示特征对于许多视觉任务非常重要。卷积神经网络(CNN) backbone 的最新进展不断展示出更强的多尺度表示能力,从而在广泛的应用中实现一致的性能提升。然而,大多数现有方法以分层方式(layer-wise)表示多尺度特征。在本文中,我们通过在一个单个残差块内构造分层的残差类连接,为CN...原创 2019-04-04 20:42:58 · 6734 阅读 · 0 评论 -
从零开始用 PyTorch 实现 YOLO (v3) 是什么体验(五)
大伙儿都会发现YOLO v3论文篇幅少,除去参考文献就四面。为了更好的理解yolov3,本人参考了yolov的pytorch版本的代码,进行网络复现:https://github.com/zhiweichen12/YOLO_v3_tutorial_from_scratch0. 先上打印的节点吧~0 convolutional torch.Size([1, 32, 416, 416])1 co...原创 2018-11-24 19:25:20 · 4173 阅读 · 6 评论 -
从零开始用 PyTorch 实现 YOLO (v3) 是什么体验(四)
从零开始用 PyTorch 实现 YOLO (v3) 是什么体验(四)代码基于 Python 3.5, 和 PyTorch 0.4. 代码发布在 Github repo 上。本体验分为5个部分:第1部分:理解 YOLO 的原理第2部分:创建网络结构第3部分:实现网络的前向传递第4部分(本文):目标分阈值和非极大值抑制第5部分:网络的输入和输出先前准备教程的前3部分关于Py...翻译 2018-11-24 19:11:19 · 1688 阅读 · 0 评论 -
从零开始用 PyTorch 实现 YOLO (v3) 是什么体验(三)
从零开始用 PyTorch 实现 YOLO (v3) 是什么体验(三)代码基于 Python 3.5, 和 PyTorch 0.4. 代码发布在 Github repo 上。本体验分为5个部分:第1部分:理解 YOLO 的原理第2部分:创建网络结构第3部分(本文):实现网络的前向传递第4部分:目标分阈值和非极大值抑制第5部分:网络的输入和输出定义网络如前所述,我们使用 nn....翻译 2018-11-24 19:09:37 · 2867 阅读 · 12 评论 -
从零开始用 PyTorch 实现 YOLO (v3) 是什么体验(一)
从零开始用 PyTorch 实现 YOLO (v3) 是什么体验(一)代码基于 Python 3.5, 和 PyTorch 0.4. 代码发布在 Github repo 上。本体验分为5个部分:第1部分(本文):理解 YOLO 的原理第2部分:创建网络结构第3部分:实现网络的前向传递第4部分:目标分阈值和非极大值抑制第5部分:网络的输入和输出YOLO是神马?YOLO 的全称是...翻译 2018-11-24 19:04:29 · 13381 阅读 · 13 评论 -
重磅!YOLO-LITE来了
YOLO-LITE是一种实时目标检测模型,可用于便携式设备,如缺少图形处理单元(GPU)的笔记本电脑或手机。该模型在PASCAL VOC数据集和COCO数据集上训练,分别达到33.81%和12.26%的mAP。YOLO-LITE仅有7层和4.82亿FLOPS,其在非GPU计算机上以大约21 FPS运行,在网页上以10 FPS运行。这个速度比最SOTA的SSD Mobilenet v1快3.8倍。...转载 2018-11-20 11:14:45 · 2234 阅读 · 1 评论 -
论文笔记:Weakly Supervised Deep Detection Networks
主要方法:第一步提取region-level特征,通过在卷积层最顶端插入spatial pyramid pooling layer;然后网络被分成两个数据流从region-level特征后面开始。 第一个数据流跟每个独立区域的类别得分有关 ,进行识别的任务,,第二个数据流,通过计算各个区域概率贡献来进行对比,从而确定出包含有图片中最显著信息的region,这个叫做检测。网络的结构上图所示。...原创 2018-11-17 11:19:23 · 1114 阅读 · 0 评论 -
论文学习笔记 WeblySupervisedLearning Meets Zero-shotLearning:AHybridApproach for FinegrainedClassification
论文: Webly Supervised Learning Meets Zero-shot Learning: A Hybrid Approach for Fine-grained Classification 链接: http://openaccess.thecvf.com/content_cvpr_2018/CameraReady/3280.pdf 这篇论...原创 2018-08-28 17:20:21 · 1392 阅读 · 0 评论 -
【论文学习笔记】Transductive Unbiased Embedding for Zero-Shot Learning (2018_CVPR)
论文:Transductive Unbiased Embedding for Zero-Shot Learning 链接:http://openaccess.thecvf.com/content_cvpr_2018/CameraReady/1369.pdf 这篇文章是来自CVPR 2018的一篇文章,这篇文章主要的贡献是提出了一个偏置损失函数,同时提出了一个端到端的网络。下...原创 2018-08-21 19:10:28 · 2814 阅读 · 11 评论 -
【论文学习笔记】Learning to Segment Every Thing (2018_CVPR)
Learning to Segment Every Thing 是发表在 2018CVPR上的一篇论文。主要工作是在mask rcnn中引入迁移学习的思想。原创 2018-08-15 10:35:33 · 1457 阅读 · 2 评论