【猫狗分类】Pytorch VGG16 实现猫狗分类3-生成器+数据增强

背景

进行生成器的构建,还有数据增强。并且封装在data.py函数里。

声明:整个数据和代码来自于b站,链接:使用pytorch框架手把手教你利用VGG16网络编写猫狗分类程序_哔哩哔哩_bilibili

我做了复现,并且记录了自己在做这个项目分类时候,一些所思所得。

构建生成器+数据增强

这段代码定义了一个自定义的数据生成器类`DataGenerator`,用于处理图像数据,特别适用于深度学习中的图像分类或物体检测任务。下面是这个脚本的主要功能和流程总结:

1. **预处理函数定义**:
   - `preprocess_input(x)`: 将图像像素值归一化到[-1, 1]区间,这是许多深度学习模型的标准输入格式。
   - `cvtColor(image)`: 确保图像为RGB格式,如果输入是灰度或其他格式,则转换为RGB。

2. **`DataGenerator`类**:
   - **初始化 (`__init__`)**: 接受图像标注信息的列表、图像输入尺寸和是否进行随机数据增强的标志。
   - **数据长度 (`__len__`)**: 返回数据集的总样本数。
   - **获取样本 (`__getitem__`)**: 
     - 读取图像和标签;
     - 应用数据增强(如果`random=True`),包括缩放、裁剪、翻转、旋转和色域扭曲;
     - 对图像进行预处理(归一化并调整通道顺序);
     - 返回处理后的图像数据和标签。
   - **辅助函数**:
     - `rand(a, b)`: 生成一个在[a, b]范围内的随机数。
     - `get_random_data(image, inpt_shape, jitter, hue, sat, val, random)`: 实现数据增强逻辑,包括调整图像大小、添加灰边、随机翻转、旋转以及HSV空间的颜色调整。

总结来说,这个`DataGenerator`类主要用于读取图片文件,并根据给定的参数执行一系列图像预处理和数据增强操作,以便于后续的深度学习模型训练。它能够生成经过标准化处理和增强的数据,提高模型对图像变化的鲁棒性,适合于训练图像识别、分类或检测模型。

【为什么获取样本放在 (__getitem__)

def __getitem__(self, index):
    annotation_path=self.annotation_lines[index].split(';')[1].split()[0]
    image=Image.open(annotation_path)
    image=self.get_random_data(image,self.input_shape,random=self.random)
    image=np.transpose(preprocess_input(np.array(image).astype(np.float32)),[2,0,1])
    y=int(self.annotation_lines[index].split(';')[0])
    return image,y

在Python的类定义中,`__getitem__`方法是一个特殊方法,当实例化的对象使用方括号`[]`操作符访问元素时,该方法会被自动调用。对于数据处理或者数据集类(如上述的`DataGenerator`)而言,实现`__getitem__`方法具有重要意义,原因如下:

1. **索引访问**: 在深度学习中,我们经常需要按索引从数据集中获取单个样本,用于训练或验证模型。通过重载`__getitem__`,可以像操作列表一样简单地从数据集中提取数据,例如`data = dataset[i]`。

2. **迭代兼容**: 实现了`__getitem__`的数据集类可以被用在for循环中,因为Python的迭代协议会尝试使用`__getitem__`方法来遍历对象。这样使得数据集能够方便地与很多现有的库和框架集成,比如PyTorch的训练循环中直接迭代数据加载器。

3. **兼容PyTorch等框架**: 深度学习框架(如PyTorch)的数据加载器(DataLoader)要求数据集类实现`__getitem__`和`__len__`方法,以便能够高效地按批次加载和处理数据。这允许框架根据需要动态地请求和处理数据,特别是在进行批量训练时,提高了内存效率和训练速度。

4. **灵活的数据处理**: 在`__getitem__`内部,可以根据索引执行复杂的逻辑来处理和返回特定的样本。这包括但不限于加载图像、应用数据增强、预处理等操作,为每个样本提供了定制化的处理流程。

因此,在上述代码中,将获取样本的逻辑放在`__getitem__`方法中,是为了遵循这些最佳实践和框架要求,确保数据集能够高效、灵活地服务于深度学习模型的训练和验证过程。

完整代码

import cv2
import numpy as np
import torch.utils.data as data
from PIL import  Image

def preprocess_input(x):
    x/=127.5
    x-=1.
    return x
def cvtColor(image):
    if len(np.shape(image))==3 and np.shape(image)[-2]==3:
        return image
    else:
        image=image.convert('RGB')
        return image


class DataGenerator(data.Dataset):
    def __init__(self,annotation_lines,inpt_shape,random=True):
        self.annotation_lines=annotation_lines
        self.input_shape=inpt_shape
        self.random=random

    def __len__(self):
        return len(self.annotation_lines)
    def __getitem__(self, index):
        annotation_path=self.annotation_lines[index].split(';')[1].split()[0]
        image=Image.open(annotation_path)
        image=self.get_random_data(image,self.input_shape,random=self.random)
        image=np.transpose(preprocess_input(np.array(image).astype(np.float32)),[2,0,1])
        y=int(self.annotation_lines[index].split(';')[0])
        return image,y
    def rand(self,a=0,b=1):
        return np.random.rand()*(b-a)+a

    def get_random_data(self,image,inpt_shape,jitter=.3,hue=.1,sat=1.5,val=1.5,random=True):

        image=cvtColor(image)
        iw,ih=image.size
        h,w=inpt_shape
        if not random:
            scale=min(w/iw,h/ih)
            nw=int(iw*scale)
            nh=int(ih*scale)
            dx=(w-nw)//2
            dy=(h-nh)//2

            image=image.resize((nw,nh),Image.BICUBIC)
            new_image=Image.new('RGB',(w,h),(128,128,128))

            new_image.paste(image,(dx,dy))
            image_data=np.array(new_image,np.float32)
            return image_data
        new_ar=w/h*self.rand(1-jitter,1+jitter)/self.rand(1-jitter,1+jitter)
        scale=self.rand(.75,1.25)
        if new_ar<1:
            nh=int(scale*h)
            nw=int(nh*new_ar)
        else:
            nw=int(scale*w)
            nh=int(nw/new_ar)
        image=image.resize((nw,nh),Image.BICUBIC)
        #将图像多余的部分加上灰条
        dx=int(self.rand(0,w-nw))
        dy=int(self.rand(0,h-nh))
        new_image=Image.new('RGB',(w,h),(128,128,128))
        new_image.paste(image,(dx,dy))
        image=new_image
        #翻转图像
        flip=self.rand()<.5
        if flip: image=image.transpose(Image.FLIP_LEFT_RIGHT)
        rotate=self.rand()<.5
        if rotate:
            angle=np.random.randint(-15,15)
            a,b=w/2,h/2
            M=cv2.getRotationMatrix2D((a,b),angle,1)
            image=cv2.warpAffine(np.array(image),M,(w,h),borderValue=[128,128,128])
        #色域扭曲
        hue=self.rand(-hue,hue)
        sat=self.rand(1,sat) if self.rand()<.5 else 1/self.rand(1,sat)
        val=self.rand(1,val) if self.rand()<.5 else 1/self.rand(1,val)
        x=cv2.cvtColor(np.array(image,np.float32)/255,cv2.COLOR_RGB2HSV)#颜色空间转换
        x[...,1]*=sat
        x[...,2]*=val
        x[x[:,:,0]>360,0]=360
        x[:,:,1:][x[:,:,1:]>1]=1
        x[x<0]=0
        image_data=cv2.cvtColor(x,cv2.COLOR_HSV2RGB)*255
        return image_data


 

  • 29
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: PyTorch VGG16是一种深度学习模型,可用于猫狗分类任务。该模型使用卷积神经网络(CNN)进行训练,具有16个卷积层和3个全连接层。通过在大量的猫狗图像数据集上进行训练,该模型可以准确地识别猫和狗的图像。在实际应用中,可以使用PyTorch VGG16模型来对新的猫狗图像进行分类,以便进行自动化的图像识别和分类。 ### 回答2: Pytorch是一种广泛应用的深度学习框架,而VGG16是经典卷积神经网络之一,被广泛应用于图像分类问题中。在本次实验中,我们使用Pytorch框架来实现猫狗分类问题。 我们首先需要下载并导入所需的库,比如torch、torchvision、matplotlib等。接下来,我们需要下载数据集。对于猫狗分类问题,我们可以使用Kaggle提供的一个数据集,其中包含25000张图片,5000张为验证集。在训练过程中,我们需要对数据进行预处理和增强,比如随机旋转、裁剪、填充、缩放等,以增加数据的多样性,并防止模型过拟合。 接下来,我们可以构建VGG16卷积神经网络,并对其进行微调。由于该网络已经在大规模的ImageNet数据集上进行了预训练,我们只需要在最后一层加上一个全连接层,并使用softmax激活函数来进行预测。我们可以使用Adam优化器来进行训练,并定义损失函数为交叉熵损失函数。 在训练过程中,我们需要设置一些参数,比如batch size、number of epochs等。我们还需要对模型进行评估,以评估其在验证集上的准确率和损失函数值。 最后,我们可以使用训练好的模型来对新的猫狗图片进行分类。首先,我们需要将图像进行与训练数据一样的预处理。然后,我们可以使用模型进行预测,并输出预测结果。 总的来说,使用PytorchVGG16实现猫狗分类问题是一项有趣而挑战性的任务。通过使用预处理技巧和卷积神经网络,我们可以有效地处理这个问题,并得到准确的预测结果。 ### 回答3: 在猫狗分类问题上,PyTorch中的VGG16模型被普遍应用于图像分类问题,它是一种卷积神经网络模型。这个模型基于ImageNet数据集进行训练,可以对各种物体进行分类,包括猫和狗。在猫狗分类项目中,我们可以利用VGG16模型进行特征提取,并利用这些特征进行分类。以下是一个基本的步骤: 1. 数据集准备 在开始训练模型之前,需要先准备好数据集。可以使用训练集和验证集,每个集合分别包含标签为“猫”或“狗”的图像。每张图像的大小和像素数应该相同。 2. 加载数据集 将数据集加载到PyTorch Tensor中,这个步骤可以通过使用torchvision.transforms来进行图像预处理,例如图像缩放、标准化等,这样可以帮助训练更快收敛。 3. 加载VGG16模型 加载预训练的VGG16模型,并将其想要的分类层替换为预训练的VGG16模型的特定层。 4. 特征提取 将图像输入到模型中,获取使用了预训练的VGG16模型的特征映射。 5. 分类 将获取的特征映射传递到分类层中,这个分类层可以是任何全连接层。 6. 训练和验证 使用交叉熵作为损失函数,利用Mini-batch stochastic gradient descent作为优化器,开始训练模型。 7. 发布、测试和评估模型 在测试集上运行模型,并计算其准确度,同时在分类错误的图像中观察,并尝试找出哪些特征基本上错了(即容易混淆猫和狗)。 总的来说,通过利用PyTorch VGG16模型进行猫狗分类,我们可以轻松地创建出一个非常精确的模型来区分猫和狗。这个模型可以被应用于实际的应用场景,例如应用在宠物社交媒体应用程序上,或其他需要对猫和狗进行分类的场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值