HDOJ 5671 Matrix

Matrix

Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 780    Accepted Submission(s): 330


Problem Description
There is a matrix M that has n rows and m columns (1n1000,1m1000) .Then we perform q(1q100,000) operations:

1 x y: Swap row x and row y (1x,yn) ;

2 x y: Swap column x and column y (1x,ym) ;

3 x y: Add y to all elements in row x (1xn,1y10,000) ;

4 x y: Add y to all elements in column x (1xm,1y10,000) ;
 

Input
There are multiple test cases. The first line of input contains an integer T(1T20) indicating the number of test cases. For each test case:

The first line contains three integers n , m and q .
The following n lines describe the matrix M. (1Mi,j10,000) for all (1in,1jm) .
The following q lines contains three integers a(1a4) , x and y .
 

Output
For each test case, output the matrix M after all q operations.
 

Sample Input
  
  
2 3 4 2 1 2 3 4 2 3 4 5 3 4 5 6 1 1 2 3 1 10 2 2 2 1 10 10 1 1 1 2 2 1 2
 

Sample Output
  
  
12 13 14 15 1 2 3 4 3 4 5 6 1 10 10 1
Hint
Recommand to use scanf and printf
 


中文题面:BC Round #81 (div.2)1002  


代码如下:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int map[1010][1010];
int row[1010],col[1010];
int hx[1010],hy[1010]; 
int main()
{
	int t,n,m,q,i,j,a,x,y;
	scanf("%d",&t);
	while(t--)
	{
		scanf("%d%d%d",&n,&m,&q);
		for(i=1;i<=n;++i)
		{
			for(j=1;j<=m;++j)
			{
				scanf("%d",&map[i][j]);
				row[i]=i; 
				hx[i]=0;
			}
		}
		for(j=1;j<=m;++j)
		{
			col[j]=j;
			hy[j]=0;
		}
		while(q--)
		{
			scanf("%d%d%d",&a,&x,&y);
			if(a==1)
				swap(row[x],row[y]);
			else if(a==2)
				swap(col[x],col[y]);
			else if(a==3)
				hx[row[x]]+=y;
			else 
				hy[col[x]]+=y; 
				
		}
		for(i=1;i<=n;++i)
		{
			for(j=1;j<=m;++j)
			{
				if(j==m)
					printf("%d\n",map[row[i]][col[j]]+hx[row[i]]+hy[col[j]]);
				else
					printf("%d ",map[row[i]][col[j]]+hx[row[i]]+hy[col[j]]);
			}
		} 
	} 
	return 0;
} 




深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值