python数据分析之数据分箱

目录

一、数据分箱的概念

二、区间概念

三、数据分箱的特征

四、数据分箱的优缺点:

1.优点:

2.缺点:

五、数据分箱函数pd.cut()解析:

六、举例

1.首先先导入需要的包和数据集文件

2.对该数据集的上映年份进行数据分箱

3.保存到表格中

4.输入标签来划分等级并存入表格

七、总结


一、数据分箱的概念

在Python数据分析中,数据分箱是一种将连续变量分割成若干个“箱”或“桶”的技术。每个“箱”或“桶”中的值具有相似的特征。这种技术可以帮助我们减少数据的复杂性,更容易理解和分析数据。

在数据分箱的过程中,通常会根据数据的分布和业务需求来确定分箱的边界。例如,对于年龄数据,可以按照年龄段进行分箱,如“0-18岁”、“19-30岁”、“31-45岁”等。通过分箱,可以将连续的年龄数据转换为离散的类别数据,方便后续的分析和处理。

二、区间概念

  1. “区间”指的是数字的范围。一般用括号和数字表示一个区间。
  2. ( a , b ] 表示一个区间,不包括a,但是包括b。数字1 不属于(1,2),但1 属于[1,2)。
  3. Pandas中有一个Interval类可以生成“区间”对象

三、数据分箱的特征

在Python数据分析中,数据分箱的特征主要包括完备性、互斥性、等距性、有穷性和有意义性

  1. 完备性:各个分箱加在一起涵盖了变量的取值范围。
  2. 互斥性:各个分箱之间没有交集部分。
  3. 等距性:各个分箱的范围是一样的(除了首尾有时候的“半无限”集合)。
  4. 有穷性:分箱的个数是有限的。
  5. 有意义性:各个分箱要具有一定的意义,每个分箱之间有意义上的区别。

这些特征保证了数据分箱的有效性和准确性,为后续的数据分析和处理提供了基础。

四、数据分箱的优缺点:

1.优点:

  • 减少噪声和异常值的影响:通过将连续变量离散化,可以减少噪声和异常值对分析的影响,提高数据的稳定性和可靠性。
  • 提高数据的可读性和可理解性:离散化后的数据更容易理解和分析,可以直观地展示数据的分布和趋势。
  • 适用于多种数据分析方法:离散化后的数据可以适用于多种数据分析方法,如分类、聚类、关联规则挖掘等。
  • 降低计算复杂度和提高效率:离散化后的数据维度降低,可以减少计算复杂度和提高分析效率。

2.缺点:

  • 可能会丢失部分信息:离散化过程中可能会丢失部分数据的细节和信息,导致分析结果的精度降低。
  • 不适用于所有数据:离散化不适用于所有类型的数据,特别是对于具有复杂分布和多峰分布的数据。
  • 需要手动确定分箱边界:离散化的效果取决于分箱边界的确定方式,需要手动确定或采用一些算法来确定分箱边界,增加了分析和处理的复杂性。

五、数据分箱函数pd.cut()解析:

data:需要进行分箱的序列对象
bins:1. 输入为整数数字时,表示切分的区间个数,每个区间的长度相等
           2. 输入为序列型数据时,表示以序列中的数作为各个区间的边界点
labels:接收列表对象,指定各区间的名称 

六、举例

1.首先先导入需要的包和数据集文件

import pandas as pd
df = pd.read_csv('数据集/电影评分.csv',encoding='gbk',engine='python')
df

 导入的数据

2.对该数据集的上映年份进行数据分箱

由此可以看出该数据集的上映年份最早是1931年,最晚为2021年,所以我的数据分箱从1930年开始

#对上映年份进行数据分箱
pd.cut(df['上映年份'],bins=[1930,1940,1950,1960,1970,1980,1990,2000,2010,2020,2030])

3.保存到表格中

df['年代区间'] = pd.cut(df['上映年份'],bins=[1930,1940,1950,1960,1970,1980,1990,2000,2010,2020,
                                    2030])
df

4.输入标签来划分等级并存入表格

df['年代等级'] = pd.cut(df['上映年份'],
                   bins=[1930,1940,1950,1960,1970,1980,1990,2000,2010,2020,2030],
                   labels=['30年代','40年代','50年代','60年代','70年代','80年代','90年代','00年代','10年代','20年代'])
df

由此可见已经完成数据分箱了,下面可以用value_counts()函数统计各等级的电影数量

df['年代等级'].value_counts()

七、总结

数据分箱在数据分析中具有重要的作用。首先,它可以提高数据的可读性和可理解性。将连续变量转换为离散变量后,数据的分布和趋势会更加直观,便于分析人员快速了解数据的特征和规律。

其次,数据分箱可以用于特征选择和降维。在某些情况下,原始数据可能包含大量冗余或无关的特征,通过分箱可以将这些特征合并或删除,减少特征的维度,提高分析的效率和准确性。

此外,数据分箱还可以用于模型的训练和预测。在建立分类模型时,需要对连续变量进行离散化处理。通过分箱,可以将连续变量转换为离散变量,从而适用于分类模型的训练和预测。

需要注意的是,数据分箱是一种有损的数据处理技术,它可能会丢失部分数据的细节和信息。因此,在进行数据分箱时需要权衡利弊,选择合适的分箱方法和策略,以最大程度地保留数据的原始特征和信息。

  • 37
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
数据预处理中的分箱和平滑是常用的技术,它们可以对数据进行处理,使得数据更易于分析和建模。以下是python中常用的分箱和平滑方法: 1. 分箱分箱是将连续的数值型变量离散化为分类变量的过程。它可以将数据分成几个不同的区间,然后将每个区间标记为一个离散值。分箱通常用于降低模型的复杂度和抑制噪声。常用的分箱方法有等频分箱、等距分箱和聚类分箱。 等频分箱方法可以使用pandas的qcut函数来实现,例如: ``` python import pandas as pd data = pd.read_csv('data.csv') data['age_bin'] = pd.qcut(data['age'], q=5, labels=False) ``` 等距分箱方法可以使用numpy的linspace函数来实现,例如: ``` python import numpy as np data = pd.read_csv('data.csv') data['age_bin'] = np.linspace(data['age'].min(), data['age'].max(), 5) data['age_bin'] = pd.cut(data['age'], bins=data['age_bin'], labels=False) ``` 2. 平滑: 平滑是将数据中的噪声和异常值去除的过程,它可以使模型更加稳定和准确。常用的平滑方法有移动平均、指数平滑和Loess平滑等。 移动平均方法可以使用pandas的rolling函数来实现,例如: ``` python import pandas as pd data = pd.read_csv('data.csv') data['age_ma'] = data['age'].rolling(window=5).mean() ``` 指数平滑方法可以使用pandas的ewm函数来实现,例如: ``` python import pandas as pd data = pd.read_csv('data.csv') data['age_ewm'] = data['age'].ewm(alpha=0.5).mean() ``` Loess平滑方法可以使用statsmodels的lowess函数来实现,例如: ``` python import statsmodels.api as sm data = pd.read_csv('data.csv') data['age_loess'] = sm.nonparametric.lowess(data['age'], range(len(data['age'])), frac=0.25, return_sorted=False) ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值