tf.nn.rnn_cell.DroupoutWrapper函数的用法

tf.nn.rnn_cell.DroupoutWrapper(cell, input_keep_prob=1.0, output_keep_prob=1.0)

主要的参数就是三个

第一个就是输入的循环神经网络的cell,可以设定为BasicLSTMCell等等。

第二个参数就是输入数据使用dropout,后面的概率,如果是一,就不会执行dropout。

第三个参数是输出数据使用dropout,后面的概率,如果是一,就不会执行dropout.

一般这里的dropout是在输入,输出,或者不用的循环层之间使用,或者全连接层,不会在同一层的循环体中使用。


因此,基于tf 的最基本的 rnn (或者说static_rnn)代码是下面这样的:
cell = SomeRnnCell(...)
state = cell.zero_state(...)
outputs = []
with tf.variable_scope("scope_name"):
    for time_step in xrange(step_num):
        if time_step > 0: 
              tf.get_variable_scope().reuse_variables()  # 第一次cell.__call__()之后的需要 reuse
       (cell_output, state) = cell(inputs[:, time_step, :], state)
       outputs.append(cell_output)


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值