风格转移之WCT(Whiten- Color Transform)

本文深入探讨了WCT(Whiten-Color Transform)在风格转移中的应用,这是一种通用方法,无需针对特定风格训练。通过特征空间的协方差匹配,实现内容与风格的融合,并使用预训练的VGG-19和解码器进行图像重构。WCT首先对特征进行白化,然后将内容图特征迁移到风格图特征分布上,最后通过解码器生成风格化图像。实验表明,这种方法能有效进行风格转移。
摘要由CSDN通过智能技术生成

简介:

本篇博文介绍论文UniversalStyle Transfer via FeatureTransforms文章的作者希望能够得到一种通用的风格转移的方法,在图像特征空间中,将内容图的特征和风格图的特征进行整合,再通过一个通用的解码网络将整合的特征进行解码,进而产生风格转移后的图片。基于这个思想,作者使用了WCTWhiten-ColorTransform)将内容图的特征协方差与给定风格的特征协方差进行匹配。与之前的方法相比,该方法不需要针对某一种特征图进行训练,可以使用任意风格图对内容图进行风格转移。实验证明,该方法具有通用性。


我的复现代码:https://github.com/zhangcliff/WCT-based-style-transfer

参考代码:https://github.com/eridgd/WCT-TF

                      https://github.com/sunshineatnoon/PytorchWCT


一、通用的解码器(decoder

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值