Python+networkx 网络可视化方法

本文介绍如何利用Python的networkx库对社交网络进行可视化分析,以美国历史上的女士社交活动为例,通过数据探索找出社交明星,并探讨网络图在识别关键人物中的应用。文章还分享了在数据处理和networkx绘图过程中遇到的一些语法知识点。
摘要由CSDN通过智能技术生成

一、 背景

今天准备学习网络图networkx的基本操作。选择的用例为一百年以前美国一些社会科学家从报纸上搜集的“知名女士参加社会活动的记录”,表结构简化如下:
在这里插入图片描述

通过网络图能否找出社交中的明星呢?这里说的明星是指:参加社交活动较多且认识其他知名女士较多的Lady。

二、 思路

按照以上定义,我们首先探索数据,先找出参加活动较多的女士,结果如下,看起来W01、W03参加活动最多,她们是不是就是我们要找的“明星”呢?
在这里插入图片描述

我们还需要找一下,这些人中,谁认识的人较多。这个目标怎么实现呢?老师给我们一个思路:假设参加同一个活动的Lady能相互认识,我们整理一个“女士见面次数表”。这样以来,我们就可以通过活动将这些女士联系起来,并形成一个网络图,形如:
在这里插入图片描述

图一
怎么看这样的图,难道在中心位置的就是圈子最大的人吗?为理清这一点,老师提出让我们把见面(同时

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值