PCA学习笔记

PCA是一种特征降维方法,通过正交变换找到方差最大的新特征,并按重要性排序,选择前k个主成分降低维数。计算过程包括计算协方差矩阵、特征值分解,依据特征值大小选取主成分,最后将样本投影到新向量空间。确定k值通常依据累积贡献率,期望达到90%以上。
摘要由CSDN通过智能技术生成

1.基本思想

PCA方法是从一组特征中通过求解最优的正交变换,得到一组相互间方差最大的新特征,它们是原始特征的线性组合,且相互之间是不相关的,再对新特征进行重要性排序,选取前几个主成分。

2.具体过程

首先,定义样本和特征,假定有m个样本,每个样本有n个特征,可表示如下:


降维过程其实就是寻找一个或多个向量u1,u2,…,un,使得这些向量构成一个新的向量空间,然后把需要降维的样本映射到这个新的样本空间上。PCA特征提取就是将这些向量根据特征值大小进行从大到小的排序,提取前k个特征,组合成一个向量空间,从而降低特征维数。具体计算如下:

先计算样本的协方差矩阵


再对协方差矩阵进行特征值分解,得到特征值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值