《算法笔记》第5章数学问题

数学问题

1. 数字与数组相互转化

const int n = 8; //位数
void to_arr(int num, int arr[]) { //从高位到底位,如12345转换为00012345
    for (int i = n - 1; i >= 0; i--) {
        arr[i] = num % 10;
        num /= 10;
    }
}

int to_num(int arr[]) { //从低位到高位,如00012345转换为12345
    int num = 0;
    for (int i = 0; i < n; i++) {
        num = num * 10 + arr[i];
    }
    return num;
}


2. 进制转换

2.1 P进制转换为十进制

#include <cstdio>

int to_ten(int x, int P) { //把P进制的x转换为十进制的y
    int y = 0, temp = 1;
    while (x != 0) {
        y += (x % 10) * temp;
        x /= 10;
        temp *= P;
    }
    return y;
}

int main() {
    printf("%d", to_ten(110, 9));
    return 0;
}

2.2 十进制转换为Q进制

除基取余法(以11转换为2进制为例):

11除以2,得商为5,余数为1;

5除以2,得商为2,余数为1;

2除以2,得商为1,余数为0;

1除以2,得商为0,余数为1,算法终止。

将余数从后往前输出,得1011即为11的二进制数。

#include <cstdio>

int z[40], num = 0; //数组z存放Q进制数y的每一位,num为位数

void to_Q(int y, int Q) { //把十进制的y转换为Q进制的z
    do {
        z[num++] = y % Q; //除基取余
        y /= Q;
    } while (y != 0);
}

int main() {
    to_Q(93, 9);
    for (int i = num - 1; i >= 0; i--) { //逆序输出
        printf("%d", z[i]);
    }
    return 0;
}

2.3 大数进制转换(10进制以内)

2.4 大数进制转换(超过10进制)



3. 最大公约数与最小公倍数

最大公约数根据公式 g c d ( a ,    b ) = g c d ( b ,    a    %    b ) gcd(a,\;b)=gcd(b,\;a\;\%\;b) gcd(a,b)=gcd(b,a%b)计算如下:

int gcd(int a, int b) {
    if (b == 0)
        return a;
    else
        return gcd(b, a % b);
}
//或者
int gcd(int a, int b) {
    return !b ? a : gcd(b, a % b);
}

假设最大公约数为d,则a和b的最小公倍数的为ab/d,考虑溢出可以写成a/d*b。



4. 分数的四则运算

4.1 分数的表示

分子分母尽量使用long long型来存储。使用假分数的形式来表示,且制定以下三个规则:

  • 使分母down为非负数。如果分数为负,那么令分子up为负即可。
  • 如果该分数恰为0,那么规定其分子up为0,分母为1。
  • 分子和分母没有除了1以外的公约数。
typedef long long LL;

struct Fraction { //分数
    LL up, down; //分子、分母
};

4.2 分数的化简

typedef long long LL;

LL gcd(LL a, LL b) {
    if (b == 0)
        return a;
    else
        return gcd(b, a % b);
}

struct Fraction { //分数
    LL up, down; //分子、分母
};

Fraction reduction(Fraction ans) {
    if (ans.down < 0) { //分母为负数,令分子和分母都变为相反数
        ans.up = -ans.up;
        ans.down = -ans.down;
    }
    if (ans.up == 0) { //如果分子为0
        ans.down = 1; //令分母为1
    } else {
        //分子、分母的最大公约数
        LL d = gcd(abs(ans.up), abs(ans.down));
        ans.up /= d;
        ans.down /= d;
    }
    return ans;
}

4.3 分数的运算

//加
Fraction add(Fraction f1, Fraction f2) {
    Fraction ans;
    ans.up = f1.up * f2.down + f2.up * f1.down;
    ans.down = f1.down * f2.down;
    return reduction(ans);
}
//减
Fraction sub(Fraction f1, Fraction f2) {
    Fraction ans;
    ans.up = f1.up * f2.down - f2.up * f1.down;
    ans.down = f1.down * f2.down;
    return reduction(ans);
}
//乘
Fraction multi(Fraction f1, Fraction f2) {
    Fraction ans;
    ans.up = f1.up * f2.up;
    ans.down = f1.down * f2.down;
    return reduction(ans);
}
//除,当且仅当f2.up不为零时才能用下面的函数进行计算
Fraction div(Fraction f1, Fraction f2) {
    Fraction ans;
    ans.up = f1.up * f2.down;
    ans.down = f1.down * f2.up;
    return reduction(ans);
}

4.4 分数的输出

void showResult(Fraction r) {
    r = reduction(r);
    if (r.down == 1) //为整数
        printf("%lld", r.up);
    else if (abs(r.up) > r.down) { //假分数
        printf("%lld %lld/%lld", r.up / r.down, abs(r.up) % r.down, r.down);
    } else { //真分数
        printf("%lld/%lld", r.up, r.down);
    }
}


5. 素数

5.1 素数的判断

bool isPrime(int n) {
    if (n <= 1) return false;
    int sqr = (int)sqrt(1.0 * n);
    //如果n没有接近int型变量的范围上界,可以写i*i<=n
    for (int i = 2; i <= sqr; i++) { //遍历2~根号n
        if (n % i == 0) return false;
    }
    return true;
}

5.2 素数表的获取

const int maxn = 100010; //表长
// prime数组存放所有素数,pNum为素数个数
int prime[maxn], pNum = 0; 
bool p[maxn] = {false}; // p[i]=true表示i是素数

void findPrime() { //求素数表
    for (int i = 1; i < maxn; i++) {
        if (isPrime(i) == true) {
            prime[pNum++] = i;
            p[i] = true;
        }
    }
}

5.3 埃式筛法

const int maxn = 100010; //表长
int prime[maxn], pNum = 0; // prime数组存放所有素数,pNum为素数个数
bool p[maxn] = {false}; // 如果i为素数,则p[i]为false,否则p[i]为true

void findPrime() { //埃式筛法求素数表
    for (int i = 2; i < maxn; i++) {
        if (p[i] == false) { //如果i是素数
            prime[pNum++] = i;
            //从2*i开始
            for (int j = 2 * i; j < maxn; j += i) {
                //筛去所有i的倍数
                p[j] = true;
            }
        }
    }
}


6. 质因子分解

定义结构体factor来存储质因子

struct factor {
    int x, cnt; // x为质因子,cnt为其个数
} fac[10];

先打印出素数表,再进行质因子分解,只用进行到n的根号即可。

int num = 97532468, n = 0; // num为数字,n为不同质因子个数
int sqr = (int)sqrt(1.0 * num); // n的根号
//枚举根号n以内的质因子
for (int i = 0; i < pNum && prime[i] <= sqr; i++) {
    if (num % prime[i] == 0) { //如果prime[i]是n的质因子
        fac[n].x = prime[i]; //记录该质因子
        fac[n].cnt = 0;
        //计算质因子prime[i]的个数
        while (num % prime[i] == 0) {
            fac[n].cnt++;
            num /= prime[i];
        }
        n++; //不同质因子个数加1
    }
    if (num == 1) break;
}
if (num != 1) { //如果n不为1,说明n有且仅有一个大于sqrt(n)的质因子
    fac[n].x = num;
    fac[n++].cnt = 1;
}
for (int i = 0; i < n; i++) {
    printf("%d %d\n", fac[i].x, fac[i].cnt);
}

质因子分解



7. 大整数的运算

7.1 大整数的存储

使用构造函数自动初始化结构体。

struct bign {
    int d[1010];
    int len;
    bign() {
        memset(d, 0, sizeof(d));
        len = 0;
    }
};

7.2 大整数的转换

在读入大整数时,先用字符串读入,然后再把字符串转换为bign结构体,注意要让字符串逆序赋值。

bign change(char str[]) { //将整数转换为bign
    bign a;
    a.len = strlen(str); // bign的长度就是字符串的长度
    for (int i = 0; i < a.len; i++) {
        a.d[i] = str[a.len - i - 1] - '0'; //逆序赋值
    }
    return a;
}

7.3 大整数的比较

//比较a和b的大小,a大、相等、a小分别返回1、0、-1
int compare(bign a, bign b) {
    if (a.len > b.len) // a大
        return 1;
    else if (a.len < b.len) // a小
        return -1;
    else {
        for (int i = a.len - 1; i >= 0; i--) { //从高位往地位比较
            if (a.d[i] > b.d[i]) //只要有一位a更大,则a大
                return 1;
            else if (a.d[i] < b.d[i]) //只要有一位a更小,则a小
                return -1;
        }
        return 0; //两数相等
    }
}

7.4 大数的排序


7.5 大整数的四则运算

高精度加法

//下面的代码要求a和b都大于0,如果有一方是小于0的,则考虑高精度减法
//如果两方均为负,则去掉负号后用高精度加法,最后再把负号加回去即可
bign add(bign a, bign b) { //高精度a+b
    bign c;
    int carry = 0; // 进位
    //两个数相加,以较长的为界限
    for (int i = 0; i < a.len || i < b.len; i++) {
        int temp = a.d[i] + b.d[i] + carry; //两个对应位相加
        c.d[c.len++] = temp % 10; //个位数为该位结果
        carry = temp / 10; //十位数位新的进位
    }
    if (carry != 0) { //如果最后进位不为0,则直接赋给结果的最高位
        c.d[c.len++] = carry;
    }
    return c;
}

高精度减法

//下面的代码要求a大于b,如果a小于b,则交换a和b,输出负号再使用sub函数
bign sub(bign a, bign b) { //高精度a-b
    bign c;
    for (int i = 0; i < a.len || i < b.len; i++) {
        if (a.d[i] < b.d[i]) { //如果不够减
            a.d[i + 1]--; //向高位借1
            a.d[i] += 10; //当前位加10
        }
        c.d[c.len++] = a.d[i] - b.d[i]; //减法结果为当前位结果
    }
    while (c.len - 1 >= 1 && c.d[c.len - 1] == 0) {
        c.len--; //去除最高位的0,同时至少保留一位最低位
    }
    return c;
}

高精度乘法

//下面的代码要求a和b同号,如果a与b异号则需要先记录负号,去掉负号后再代入函数
bign multi(bign a, int b) { //高精度a乘低精度b
    bign c;
    int carry = 0; //进位
    for (int i = 0; i < a.len; i++) {
        int temp = a.d[i] * b + carry;
        c.d[c.len++] = temp % 10; //个位作为该位结果
        carry = temp / 10; //高位部分作为新的进位
    }
    while (carry != 0) { //和加法不同,乘法的进位可能不止一位
        c.d[c.len++] = carry % 10;
        carry /= 10;
    }
    return c;
}

高精度除法

//下面的代码要求a和b都大于0,如果a和b存在负数,则根据题目条件更改
bign div(bign a, int b, int &r) { //高精度a除以b,r为余数
    bign c;
    //被除数的每一位和商的每一位是一一对应的,因此先令长度相等
    c.len = a.len;
    for (int i = a.len - 1; i >= 0; i--) {
        r = r * 10 + a.d[i]; //和上一位遗留的余数组合
        if (r < b) { //不够除
            c.d[i] = 0;
        } else { //够除
            c.d[i] = r / b;
            r = r % b;
        }
    }
    while (c.len - 1 >= 1 && c.d[c.len - 1] == 0) {
        c.len--; //去除最高位的0,同时至少保留一位最低位
    }
    return c;
}

a+b

浮点数加法



8. 扩展欧几里得算法

8.1 a x + b y = g c d ( a , b ) ax+by=gcd(a,b) ax+by=gcd(a,b)的求解

给定两个非零整数 a a a b b b,求一组整数解 ( x , y ) (x,y) (x,y),使得 a x + b y = g c d ( a , b ) ax+by=gcd(a,b) ax+by=gcd(a,b)成立,其中 g c d ( a , b ) gcd(a,b) gcd(a,b)表示 a a a b b b的最大公约数。

当计算 g c d ( a , b ) gcd(a,b) gcd(a,b)时,有 a x 1 + b y 1 = g c d ax_1+by_1=gcd ax1+by1=gcd;而在下一步计算 g c d ( b , a % b ) gcd(b,a\%b) gcd(b,a%b)时,又有 b x 2 + ( a % b ) y 2 = g c d bx_2+(a\%b)y_2=gcd bx2+(a%b)y2=gcd成立(两个 g c d gcd gcd相同)。因此 a x 1 + b y 1 = b x 2 + ( a % b ) y 2 ax_1+by_1=bx_2+(a\%b)y_2 ax1+by1=bx2+(a%b)y2成立。有考虑到 a % b = a − ( a / b ) ∗ b a\%b=a-(a/b)*b a%b=a(a/b)b成立(此处除法为整除),故有 a x 1 + b y 1 = a y 2 + b ( x 2 − ( a / b ) y 2 ) ax_1+by_1=ay_2+b(x_2-(a/b)y_2) ax1+by1=ay2+b(x2(a/b)y2)。故可以得到以下递推公式:
{ x 1 = y 2 y 1 = x 2 + ( a / b ) y \left\{ \begin{aligned} x_1&=y_2\\ y_1&=x_2+(a/b)y \end{aligned} \right. {x1y1=y2=x2+(a/b)y

int exGcd(int a, int b, int &x, int &y) { //x和y的引用
    if (b == 0) { //b为0时,a为gcd,则a*1+b*0=gcd
        x = 1;
        y = 0;
        return a;
    }
    int g = exGcd(b, a % b, x, y); //递归计算exGcd(b,a%b)
    int temp = x; //存放x的值
    x = y; //更新x=y(old)
    y = temp - a / b * y;
    return g; //g是gcd
}

通过上述算法后可以得到其中一组解,再通过以下等式即可得到全部解:
{ x ′ = x + b g c d ∗ K y ′ = y − a g c d ∗ K \left\{ \begin{aligned} x'&=x+{b\over gcd}*K\\ y'&=y-{a\over gcd}*K \end{aligned} \right. xy=x+gcdbK=ygcdaK
其中 K K K为任意整数。

对任意整数来说, ( x % b g c d + b g c d ) % b g c d (x\%{b\over gcd}+{b\over gcd})\%{b\over gcd} (x%gcdb+gcdb)%gcdb是最小非负整数解。

特别地,如果 g c d = = 1 gcd==1 gcd==1,即 a x + b y = 1 ax+by=1 ax+by=1时,全部解的公式化简如下:
{ x ′ = x + b ∗ K y ′ = y − a ∗ K \left\{ \begin{aligned} x'&=x+b*K\\ y'&=y-a*K \end{aligned} \right. {xy=x+bK=yaK
其中 K K K为任意常数,且 x x x的最小非负整数解也可以化简为
( x % b + b ) % b (x\%b+b)\%b (x%b+b)%b

8.2 a x + b y = c ax+by=c ax+by=c的求解

a x + b y = c ax+by=c ax+by=c存在解的充要条件是 c % g c d = = 0 c\%gcd==0 c%gcd==0,且一组解 ( x , y ) = ( c x 0 g c d , c y 0 g c d ) (x,y)=({cx_0\over gcd},{cy_0\over gcd}) (x,y)=(gcdcx0,gcdcy0)

其全部解为:
{ x ′ = x + b g c d ∗ K = c x 0 g c d + b g c d ∗ K y ′ = y − a g c d ∗ K = c y 0 g c d − a g c d ∗ K \left\{ \begin{aligned} x'&=x+{b\over gcd}*K={cx_0\over gcd}+{b\over gcd}*K\\ y'&=y-{a\over gcd}*K={cy_0\over gcd}-{a\over gcd}*K \end{aligned} \right. xy=x+gcdbK=gcdcx0+gcdbK=ygcdaK=gcdcy0gcdaK
其中 K K K为任意常数。

8.3 同余式 a x ≡ c ( m o d    m ) ax≡c(mod\;m) axc(modm)的求解

同余式定义

对于整数 a a a b b b m m m来说,如果 m m m整除 a − b a-b ab,即 ( a − b ) % m = 0 (a-b)\%m=0 (ab)%m=0,则称 a a a b b b m m m同余,对应的同余式为 a ≡ b ( m o d    m ) a≡b(mod\;m) ab(modm) m m m称为同余式的模。例如10与13模3同余,10也与1模3同余,它们分别记为 10 ≡ 13 ( m o d    3 ) 10≡13(mod\;3) 1013(mod3) 10 ≡ 1 ( m o d    3 ) 10≡1(mod\;3) 101(mod3)。显然,每一个整数都各自与 [ 0 , m ) [0,m) [0,m)中唯一的整数同余。

求解过程

解同余式 a x ≡ c ( m o d    m ) ax≡c(mod\;m) axc(modm),即 ( a x − c ) % m = 0 (ax-c)\%m=0 (axc)%m=0成立,故存在整数 y y y,使得 a x − c = m y ax-c=my axc=my成立。移项并令 y = − y y=-y y=y后即得 a x + m y = c ax+my=c ax+my=c

由上述结论可知,当 c % g c d ( a , m ) = = 0 c\%gcd(a,m)==0 c%gcd(a,m)==0时方程才有解,且解的形式如下,其中 ( x , y ) (x,y) (x,y) a x + m y = c ax+my=c ax+my=c的其中一组解,可以先通过求解 a x + m y = g c d ( a , m ) ax+my=gcd(a,m) ax+my=gcd(a,m)得到 x 0 , y 0 x_0,y_0 x0,y0,然后由公式 ( x , y ) = ( c x 0 g c d , c y 0 g c d ) (x,y)=({cx_0\over gcd},{cy_0\over gcd}) (x,y)=(gcdcx0,gcdcy0)直接得到。
{ x ′ = x + b g c d ∗ K y ′ = y − a g c d ∗ K \left\{ \begin{aligned} x'&=x+{b\over gcd}*K\\ y'&=y-{a\over gcd}*K \end{aligned} \right. xy=x+gcdbK=ygcdaK
其中 K K K为任意常数。

考虑 x ′ = x + m g c d ∗ K x'=x+{m\over gcd}*K x=x+gcdmK,会发现当K分别去0、1、2、…、 g c d ( a , m ) − 1 gcd(a,m)-1 gcd(a,m)1时,所得到的解在模 m m m意义下是不同的,而其他解都可以对应到 K K K取这 g c d ( a , m ) gcd(a,m) gcd(a,m)个数值之一。由此可以得到结论:

a , c , m a,c,m a,c,m是整数,其中 m ≥ 1 m≥1 m1,则

  1. c % g c d ( a , m ) ≠ 0 c\%gcd(a,m)≠0 c%gcd(a,m)=0,则同余式方程 a x ≡ c ( m o d    m ) ax≡c(mod\;m) axc(modm)无解。
  2. c % g c d ( a , m ) = 0 c\%gcd(a,m)=0 c%gcd(a,m)=0,则同余式方程 a x ≡ c ( m o d    m ) ax≡c(mod\;m) axc(modm)恰好有 g c d ( a , m ) gcd(a,m) gcd(a,m)个模 m m m意义下不同的解,且解的形式为

x ′ = x + m g c d ∗ K x'=x+{m\over gcd}*K x=x+gcdmK

其中 K = 0 , 1 , … , g c d ( a , m ) − 1 K=0,1,…,gcd(a,m)-1 K=0,1,,gcd(a,m)1 x x x a x + b y = c ax+by=c ax+by=c的一个解。

同余式 a x ≡ 1 ( m o d    m ) ax≡1(mod\;m) ax1(modm)

求解同余式 a x ≡ 1 ( m o d    m ) ax≡1(mod\;m) ax1(modm)的最小正整数解等同于求 a a a m m m的逆元。

8.4 逆元的求解以及 ( b / a ) % m (b/a)\%m (b/a)%m的计算

逆元的定义

a 、 b 、 m a、b、m abm是整数, m m m>1,且有 a b ≡ 1 ( m o d    m ) ab≡1(mod\;m) ab1(modm)成立,那么就说 a a a b b b互为模 m m m的逆元,一般也记作 a ≡ 1 b ( m o d    m ) a≡{1\over b}(mod\;m) ab1(modm) b ≡ 1 a ( m o d    m ) b≡{1\over a}(mod\;m) ba1(modm)。更通俗地说,如果两个整数的乘积模 m m m后等于1,就称它们互为 m m m的逆元。

逆元的用处

对于乘法来说有 ( b ∗ a ) % m = ( ( b % m ) ∗ ( a % m ) ) % m (b*a)\%m=((b\%m)*(a\%m))\%m (ba)%m=((b%m)(a%m))%m成立,而对于除法则没有。所以要计算 ( b / a ) % m (b/a)\%m (b/a)%m就需要用到逆元的方法。通过找到 a a a m m m的逆元 x x x,就有 ( b / a ) % m = ( b ∗ x ) % m (b/a)\%m=(b*x)\%m (b/a)%m=(bx)%m成立(只考虑 b b b a a a的整数倍的情况)。于是就把除法取模转换为乘法取模。

由定义知,求 a a a m m m的逆元,就是求解同余式 a x ≡ 1 ( m o d    m ) ax≡1(mod\;m) ax1(modm),并且在实际使用过程中,一般把 x x x的最小正整数解称为 a a a m m m的逆元。显然,同余式 a x ≡ 1 ( m o d    m ) ax≡1(mod\;m) ax1(modm)是否有解取决于 1 % g c d ( a , m ) 1\%gcd(a,m) 1%gcd(a,m)是否为0,而这等价于 g c d ( a , m ) gcd(a,m) gcd(a,m)是否为1:

  1. g c d ( a , m ) ≠ 1 gcd(a,m)≠1 gcd(a,m)=1,则同余式方程 a x ≡ 1 ( m o d    m ) ax≡1(mod\;m) ax1(modm)无解。
  2. g c d ( a , m ) = 1 gcd(a,m)=1 gcd(a,m)=1,则同余式方程 a x ≡ 1 ( m o d    m ) ax≡1(mod\;m) ax1(modm) ( 0 , m ) (0,m) (0,m)上有唯一解,可以通过求解 a x + m y = 1 = g c d ( a , m ) ax+my=1=gcd(a,m) ax+my=1=gcd(a,m)得到。由上述可知,所求的逆元为 ( x % m + m ) % m (x\%m+m)\%m (x%m+m)%m

逆元的求解

使用扩展欧几里得算法求解,使用条件是 g c d ( a , m ) = 1 gcd(a,m)=1 gcd(a,m)=1

int inverse(int a, int m) {
    int x, y;
    int g = exGcd(a, m, x, y); //求解ax+my=1;
    return (x % m + m) % m; // a模m的逆元为(x%m+m)%m
}

m m m是素数,且 a a a不是 m m m的倍数,则可以使用费马小定理求解逆元。

费马小定理

m m m是素数, a a a是任意整数且 a ≢ 0 ( m o d    m ) a≢0(mod\;m) a0(modm),则 a m − 1 ≡ 1 ( m o d    m ) a^{m-1}≡1(mod\; m) am11(modm)

a m − 1 ≡ 1 ( m o d    m ) a^{m-1}≡1(mod\; m) am11(modm) a ∗ a m − 2 ≡ 1 ( m o d    m ) a*a^{m-2}≡1(mod\; m) aam21(modm),由逆元定义知 a m − 2 % m a^{m-2}\%m am2%m就是 a a a m m m的逆元,通过快速幂来求解。

快速幂

#include <cstdio>
#include <cmath>

int exGcd(int a, int b, int &x, int &y) { //x和y的引用
    if (b == 0) { //b为0时,a为gcd,则a*1+b*0=gcd
        x = 1;
        y = 0;
        return a;
    }
    int g = exGcd(b, a % b, x, y); //递归计算exGcd(b,a%b)
    int temp = x; //存放x的值
    x = y; //更新x=y(old)
    y = temp - a / b * y;
    return g; //g是gcd
}

int inverse(int a, int m) {
    int x, y;
    int g = exGcd(a, m, x, y); //求解ax+my=1;
    return (x % m + m) % m; // a模m的逆元为(x%m+m)%m
}

typedef long long LL;
//求a^b%m,递归写法
//若初始时a大于m,则在进入函数前先让a对m取模
LL binaryPow(LL a, LL b, LL m) {
    if (b == 0) return 1;
    // b为奇数,转换为b-1
    if (b % 2 == 1) { //可用if (b & 1)替代
        return a * binaryPow(a, b - 1, m) % m;
    } else { // b为偶数,转换为b/2
        LL mul = binaryPow(a, b / 2, m);
        return mul * mul % m;
    }
}

bool isPrime(int n) {
    if (n <= 1) return false;
    int sqr = (int)sqrt(1.0 * n);
    //如果n没有接近int型变量的范围上界,可以写i*i<=n
    for (int i = 2; i <= sqr; i++) { //遍历2~根号n
        if (n % i == 0) return false;
    }
    return true;
}

int main() {
    int a, m, b;
    scanf("%d %d", &a, &m);
    if (isPrime(m) && a % m != 0) { //使用费马小定理
        a %= m;
        b = (int)binaryPow((LL)a, (LL)(m - 2), (LL)m);
    } else { //使用逆元
        b = inverse(a, m);
    }
    printf("逆元b=%d", b);
    return 0;
}

g c d ( a , m ) ≠ 1 gcd(a,m)≠1 gcd(a,m)=1时求 ( b / a ) % m (b/a)\%m (b/a)%m

此时两种方法均失效。假设 ( b / a ) % m = x (b/a)\%m=x (b/a)%m=x,因此存在整数 k k k,使得 b / a = k m + x b/a=km+x b/a=km+x。等式两边同时乘以 a a a,得 b = k a m + a x b=kam+ax b=kam+ax。等式两边同时除以 a a a,得 ( b % ( a m ) ) / a = x (b\%(am))/a=x (b%(am))/a=x,于是有 ( b / a ) % m = ( b % ( a m ) ) / a (b/a)\%m=(b\%(am))/a (b/a)%m=(b%(am))/a成立。

因此 a a a m m m有可能不互素的情况下,可以使用公式 ( b / a ) % m = ( b % ( a m ) ) / a (b/a)\%m=(b\%(am))/a (b/a)%m=(b%(am))/a来计算

( b / a ) % m (b/a)\%m (b/a)%m,唯一注意的是 a a a m m m的乘积有可能会溢出。



9. 组合数

9.1 求 n ! n! n!中质因子p的个数

n ! n! n!中有 ( n p + n p 2 + n p 3 + … ) ({n\over p}+{n\over p^2}+{n\over p^3}+…) (pn+p2n+p3n+)个质因子 p p p,其中除法均为向下取整,于是得到了O(logn)的算法:

//计算n!中有多少个质因子p
int cal(int n, int p) {
    int ans = 0;
    while (n) {
        ans += n / p;
        n /= p;
    }
    return ans;
}

n ! n! n!中质因子 p p p的个数,实际上等于1~ n n n p p p的倍数的个数 n p n\over p pn加上 n p ! {n\over p}! pn!中质因子 p p p的个数。所以代码递归版为:

//递归计算n!中有多少个质因子p
int cal(int n, int p) {
    if (n < p) return 0; // n<p时无质因子p
    //返回n/p加上(n/p!)中质因子p的个数
    return (n / p + cal(n / p, p));
}

n ! n! n!的末尾有多少个零等价于求 n ! n! n!中因子10的个数,而10=2×5,且质因子2的个数大于5,所以最终等价于求 n ! n! n!中质因子5的个数,即cal(n,5)。

9.2 组合数的计算

组合数 C n m = n ! m ! ( n − m ) ! C_{n}^{m}={n!\over{m!(n-m)!}} Cnm=m!(nm)!n!,由定义知 C n m = C n n − m C_{n}^{m}=C_{n}^{n-m} Cnm=Cnnm,且有 C n 0 = C n n = 1 C_{n}^{0}=C_{n}^{n}=1 Cn0=Cnn=1成立。

9.3 计算 C n m C_{n}^{m} Cnm

方法一:通过定义式

只能承受 n ≤ 20 n≤20 n20的数据范围。

typedef long long LL;
LL C(LL n, LL m) {
    LL ans = 1;
    for (LL i = 1; i <= n; i++) { //计算n!
        ans *= i;
    }
    for (LL i = 1; i <= m; i++) { //除以m!
        ans /= i;
    }
    for (LL i = 1; i <= n-m; i++) { //除以(n-m)!
        ans /= i;
    }
    return ans;
}

方法二:通过递推式

利用 C n m = C n − 1 m + C n − 1 m − 1 C_{n}^{m}=C_{n-1}^{m}+C_{n-1}^{m-1} Cnm=Cn1m+Cn1m1,注意到 C n 0 = C n n = 1 C_{n}^{0}=C_{n}^{n}=1 Cn0=Cnn=1。在 n = 67 、 m = 33 n=67、m=33 n=67m=33时开始溢出。

直接递归:

typedef long long LL;
LL C(LL n, LL m) {
    if (m == 0 || m == n) return 1; //递归边界
    return C(n - 1, m) + C(n - 1, m - 1);
}

直接递归会导致很多次重复计算,不妨记录已经计算过的C(n,m):

typedef long long LL;
LL res[67][67] = {0};
LL C(LL n, LL m) {
    if (m == 0 || m == n) return 1;
    if (res[n][m] != 0) return res[n][m]; //已经算过
    //赋值给res[n][m]并返回
    return res[n][m] = C(n - 1, m) + C(n - 1, m - 1);
}

或者直接把整张表全部算出来(复杂度为 O ( n 2 ) O(n^2) O(n2)):

typedef long long LL;
const int n = 60;
LL res[n + 1][n + 1] = {0};
void calC() {
    for (int i = 0; i <= n; i++) {
        res[i][0] = res[i][i] = 1; //初始化边界
    }
    for (int i = 2; i <= n; i++) {
        for (int j = 0; j <= i / 2; j++) {
            //递推计算
            res[i][j] = res[i - 1][j] + res[i - 1][j - 1];
            res[i][i - j] = res[i][j]; // C(i,i-j)=C(i,j)
        }
    }
}

方法三:通过定义式的变形

由于有乘法,在 n = 62 、 m = 31 n=62、m=31 n=62m=31时开始溢出。

观察到:
C n m = ( n − m + 1 ) × ( n − m + 2 ) × … × ( n − m + m ) 1 × 2 × … m = ( n − m + 1 ) 1 × ( n − m + 2 ) 2 × … … × ( n − m + m ) m \begin{aligned} C_{n}^{m}&={(n-m+1)×(n-m+2)×…×(n-m+m)\over {1×2×…m}}\\ &={{{{{{{(n-m+1)\over 1}×(n-m+2)}\over 2}×…}\over {…}}×(n-m+m)}\over m} \end{aligned} Cnm=1×2×m(nm+1)×(nm+2)××(nm+m)=m21(nm+1)×(nm+2)××(nm+m)
故边乘边除,时间复杂度为 O ( m ) O(m) O(m)

typedef long long LL;
LL C(LL n, LL m) {
    LL ans = 1;
    for (LL i = 1; i <= m; i++) {
        ans = ans * (n - m + i) / i; //注意一定要乘再除(保证是整除)
    }
    return ans;
}

9.4 计算 C n m % p C_{n}^{m}\%p Cnm%p

方法一:通过递推式

假设两倍的 p p p不会超过int型,适用于 m ≤ n ≤ 10000 m≤n≤10000 mn10000 p ≤ 1 0 9 p≤10^9 p109

递归:

int res[1010][1010] = {0};
int C(int n, int m, int p) {
    if (m == 0 || m == n) return 1; //递归边界
    if (res[n][m] != 0) return res[n][m]; //已经算过
    return res[n][m] = (C(n - 1, m) + C(n - 1, m - 1)) % p;
}

递推:

const int n = 1010;
int res[n][n] = {0};
void calC() {
    for (int i = 0; i <= n; i++) {
        res[i][0] = res[i][i] = 1; //初始化边界
    }
    for (int i = 2; i <= n; i++) {
        for (int j = 0; j <= i / 2; j++) {
            //递推计算
            res[i][j] = (res[i - 1][j] + res[i - 1][j - 1]) % p;
            res[i][i - j] = res[i][j]; // C(i,i-j)=C(i,j)
        }
    }
}

方法二:通过定义式

将组合数 C n m C_{n}^{m} Cnm进行质因子分解,假设分解结果为 C n m = p 1 c 1 × p 2 c 2 … × p k c k C_{n}^{m}=p_1^{c_1}×p_2^{c_2}…×p_k^{c_k} Cnm=p1c1×p2c2×pkck,那么 C n m % p C_{n}^{m}\%p Cnm%p就等于 p 1 c 1 × p 2 c 2 … × p k c k % p p_1^{c_1}×p_2^{c_2}…×p_k^{c_k}\%p p1c1×p2c2×pkck%p,通过快速幂来计算每一组的 p i c i % p p_i^{c_i}\%p pici%p,然后相乘取模就可以得到最终结果,时间复杂度为 O ( k l o g n ) O(klogn) O(klogn),其中 k k k为不超过 n n n的质数个数。适用于 m ≤ n ≤ 1 0 6 m≤n≤10^6 mn106 p ≤ 1 0 9 p≤10^9 p109

#include <cstdio>
#include <cmath>

const int maxn = 1000010; //表长
int prime[maxn], pNum = 0; // prime数组存放所有素数,pNum为素数个数
bool p[maxn] = {false}; // 如果i为素数,则p[i]为false,否则p[i]为true

//筛选得到素数表,表中最大素数不得小于n
void findPrime() {
    for (int i = 2; i < maxn; i++) {
        if (p[i] == false) { //如果i是素数
            prime[pNum++] = i;
            //从2*i开始
            for (int j = 2 * i; j < maxn; j += i) {
                //筛去所有i的倍数
                p[j] = true;
            }
        }
    }
}

//计算n!中有多少个质因子p
int cal(int n, int p) {
    int ans = 0;
    while (n) {
        ans += n / p;
        n /= p;
    }
    return ans;
}

//求a^b%m,递归写法
int binaryPow(int a, int b, int m) {
    if (b == 0) return 1;
    // b为奇数,转换为b-1
    if (b % 2 == 1) { //可用if (b & 1)替代
        return a * binaryPow(a, b - 1, m) % m;
    } else { // b为偶数,转换为b/2
        int mul = binaryPow(a, b / 2, m);
        return mul * mul % m;
    }
}

//计算C(n,m)%p
int C(int n, int m, int p) {
    int ans = 1;
    //遍历不超过n的所有质数
    for (int i = 0; prime[i] <= n; i++) {
        //计算C(n,m)中prime的指数c,cal(n,k)为n!中含质因子k的个数
        int c = cal(n, prime[i]) - cal(m, prime[i]) - cal(n - m, prime[i]);
        //快速幂计算prime[i]^c%p;
        ans = ans * binaryPow(prime[i], c, p) % p;
    }
    return ans;
}

int main() {
    findPrime();
    printf("%d", C(60, 34, 199999)); //69886166503903470%199999
    return 0;
}

方法三:通过定义式的变形

情况①: m < p m<p m<p,且 p p p是素数。

基于计算 C n m C_{n}^{m} Cnm的方法三,但是不能在除法时直接模上 p p p,因为每次的ans实际上是已经取过模的结果,不能再做除法。因此如果 p p p是素数,可以使用扩展欧几里得算法或者费马小定理求出 i i i p p p的逆元,然后将除法取模转换为乘法取模。

需要注意的是必须满足 m < p m<p m<p,否则逆元求取过程可能失效。显然时间复杂度为 O ( m l o g m ) O(mlogm) O(mlogm),其中 O ( l o g m ) O(logm) O(logm)是计算逆元的复杂度。适用于 m ≤ 1 0 6 , n 、 p ≤ 1 0 9 , m < p m≤10^6,n、p≤10^9,m<p m106,np109,m<p,且 p p p必须为素数。

#include <cstdio>

int exGcd(int a, int b, int &x, int &y) { // x和y的引用
    if (b == 0) { // b为0时,a为gcd,则a*1+b*0=gcd
        x = 1;
        y = 0;
        return a;
    }
    int g = exGcd(b, a % b, x, y); //递归计算exGcd(b,a%b)
    int temp = x; //存放x的值
    x = y; //更新x=y(old)
    y = temp - a / b * y;
    return g; // g是gcd
}

int inverse(int a, int m) {
    int x, y;
    int g = exGcd(a, m, x, y); //求解ax+my=1;
    return (x % m + m) % m; // a模m的逆元为(x%m+m)%m
}

typedef long long LL;
//计算C(n,m)%p且m小于p
LL C(int n, int m, int p) {
    LL ans = 1; //防止溢出用long long
    for (int i = 1; i <= m; i++) {
        ans = ans * (n - m + i) % p;
        ans = ans * inverse(i, p) % p; //求i模p的逆元
    }
    return ans;
}


int main() {
    printf("%lld", C(6000, 5000, 199999));
    return 0;
}

情况②: m m m任意,且 p p p是素数。

由于 m m m可能大于 p p p,事实上由于 C n m = ( n − m + 1 ) × ( n − m + 2 ) × … × ( n − m + m ) 1 × 2 × … m C_{n}^{m}={(n-m+1)×(n-m+2)×…×(n-m+m)\over {1×2×…m}} Cnm=1×2×m(nm+1)×(nm+2)××(nm+m),分子所含质因子 p p p的个数必不少于分母所含质因子 p p p的个数。故通过for循环过程中单独处理质因子 p p p,对其他部分正常计算逆元。如果分子质因子 p p p的个数大于分母,则直接返回0,否则返回计算结果。

显然时间复杂度为 O ( m l o g n ) O(mlogn) O(mlogn),其中 O ( l o g m ) O(logm) O(logm)是计算逆元的复杂度。适用于 m ≤ 1 0 6 , n 、 p ≤ 1 0 9 m≤10^6,n、p≤10^9 m106,np109,且 p p p必须为素数。

#include <cstdio>

int exGcd(int a, int b, int &x, int &y) { // x和y的引用
    if (b == 0) { // b为0时,a为gcd,则a*1+b*0=gcd
        x = 1;
        y = 0;
        return a;
    }
    int g = exGcd(b, a % b, x, y); //递归计算exGcd(b,a%b)
    int temp = x; //存放x的值
    x = y; //更新x=y(old)
    y = temp - a / b * y;
    return g; // g是gcd
}

int inverse(int a, int m) {
    int x, y;
    int g = exGcd(a, m, x, y); //求解ax+my=1;
    return (x % m + m) % m; // a模m的逆元为(x%m+m)%m
}

typedef long long LL;
//计算C(n,m)%p
LL C(int n, int m, int p) {
    LL ans = 1; //防止溢出用long long
    int numP = 0; //统计质因子p的个数
    for (int i = 1; i <= m; i++) { //分子
        int temp = n - m + i;
        while (temp % p == 0) { //去除分子中的所有p,同时累计numP
            numP++;
            temp /= p;
        }
        ans = ans * temp % p; //乘以分子中除了p以外的部分
        temp = i;
        while (temp % p == 0) { //去除分母中的所有p,同时减少numP
            numP--;
            temp /= p;
        }
        ans = ans * inverse(temp, p) % p; //除以分母中除了p以外的部分
    }
    if (numP > 0) //分子中p的个数多余分母,直接返回0
        return 0;
    else
        return ans; //分子中p的个数等于分母,返回计算结果
}

int main() {
    printf("%lld", C(8000, 3000, 2953));
    return 0;
}

方法四:Lucas定理

如果 p p p是素数,将 m m m n n n表示为 p p p进制:
m = m k p k + m k − 1 p k − 1 + … + m 0 n = n k p k + n k − 1 p k − 1 + … + n 0 \begin{aligned} m&=m_kp^k+m_{k-1}p^{k-1}+…+m_0\\ n&=n_kp^k+n_{k-1}p^{k-1}+…+n_0 \end{aligned} mn=mkpk+mk1pk1++m0=nkpk+nk1pk1++n0
那么Lucas(卢卡斯)定理告诉我们, C n m ≡ C n k m k + C n k − 1 m k − 1 … + C n 0 m 0 ( m o d    p ) C_{n}^{m}≡C_{n_{k}}^{m_{k}}+C_{n_{k-1}}^{m_{k-1}}…+C_{n_{0}}^{m_{0}}(mod\;p) CnmCnkmk+Cnk1mk1+Cn0m0(modp)成立。

适用于 p ≤ 1 0 5 , m ≤ n ≤ 1 0 18 p≤10^5,m≤n≤10^{18} p105mn1018,且 p p p必须为素数。

#include <cstdio>

int p; //作为全局变量

int exGcd(int a, int b, int &x, int &y) { // x和y的引用
    if (b == 0) { // b为0时,a为gcd,则a*1+b*0=gcd
        x = 1;
        y = 0;
        return a;
    }
    int g = exGcd(b, a % b, x, y); //递归计算exGcd(b,a%b)
    int temp = x; //存放x的值
    x = y; //更新x=y(old)
    y = temp - a / b * y;
    return g; // g是gcd
}

int inverse(int a, int m) {
    int x, y;
    int g = exGcd(a, m, x, y); //求解ax+my=1;
    return (x % m + m) % m; // a模m的逆元为(x%m+m)%m
}

typedef long long LL;
//计算C(n,m)%p且m小于p
LL C(int n, int m) {
    LL ans = 1; //防止溢出用long long
    int numP = 0; //统计质因子p的个数
    for (int i = 1; i <= m; i++) { //分子
        int temp = n - m + i;
        while (temp % p == 0) { //去除分子中的所有p,同时累计numP
            numP++;
            temp /= p;
        }
        ans = ans * temp % p; //乘以分子中除了p以外的部分
        temp = i;
        while (temp % p == 0) { //去除分母中的所有p,同时减少numP
            numP--;
            temp /= p;
        }
        ans = ans * inverse(temp, p) % p; //除以分母中除了p以外的部分
    }
    if (numP > 0) //分子中p的个数多余分母,直接返回0
        return 0;
    else
        return ans; //分子中p的个数等于分母,返回计算结果
}


LL Lucas(LL n, LL m) {
    if (m == 0) return 1;
    return C(n % p, m % p) * Lucas(n / p, m / p) % p;
}

int main() {
    scanf("%d", &p); // 24281
    printf("%lld", Lucas(84560878, 4345));
    return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
数据结构与算法是计算机科学的基础和核心领域之一,第ba介绍了数据结构的相关内容。 本主要包括以下几个方面的内容: 1. 线性结构:线性结构是指数据元素之间存在一对一的关系,包括线性表、栈和队列。线性表是最基本的数据结构之一,它分为顺序表和链表两种形式。顺序表使用数组实现,插入和删除操作相对低效。链表使用指针实现,插入和删除操作较为灵活。 2. 树结构:树结构是一种层次结构,由节点和边组成。常见的树结构有二叉树、二叉搜索树和平衡二叉树等。二叉树中每个节点最多有两个子节点,二叉搜索树中左子节点的值小于根节点,右子节点的值大于根节点,查找效率较高。平衡二叉树是一种保持左右子树高度差不大于1的二叉搜索树。 3. 图结构:图结构是由节点和边组成的非线性结构。图分为有向图和无向图。图的表示方法有邻接矩阵和邻接表两种。深度优先搜索和广度优先搜索是图的常用遍历方法,可用于寻找路径、连通分量等问题。 4. 排序算法:排序算法是对一组无序数据进行按照某个规则进行有序排列的算法。第ba介绍了常见的排序算法,包括冒泡排序、插入排序、选择排序、归并排序、快速排序等。每种排序算法的时间复杂度和空间复杂度不同,选择合适的排序算法可以提高性能。 5. 查找算法:查找算法是在一组数据中搜索某个特定元素的算法。第ba介绍了顺序查找、二分查找和哈希查找等常见的查找算法。二分查找是在有序数组中应用最广泛的查找算法,通过不断缩小查找范围来快速定位目标值。 通过学习这些内容,我们可以了解不同数据结构的特点和应用场景,以及常见的排序和查找算法。掌握好这些知识,对于解决实际问题和提高程序效率都有很大帮助。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值