- 博客(29)
- 收藏
- 关注
原创 一篇关于如何阅读论文的论文
文章目录目标Three-pass MethodThe first passThe second passThe third pass写一个综述读论文是研究生阶段重要的任务,最近的一次偶然的机会,我看到了一篇名为 How to Read a paper 的论文,作者依照自己多年的经验,给初学者们提出了一些阅读论文的意见,其中的“三遍阅读法”(Three-pass Method)非常有借鉴意义,所以在这里记录下论文的核心内容,并且在今后的看论文的时候时不时翻阅一下,以养成良好的阅读习惯。目标第一遍:弄清
2021-09-26 11:24:04 380
原创 机器学习中的数学:信息论(Information Theory)
本博客是阅读Dive into Deep Learning 附录中Information Theory的笔记。信息论对我们理解损失函数很重要,所以学习一些相关的知识很有必要。
2021-08-30 09:10:55 1268
原创 Win10系统下构建临时网络
参考链接首先鼠标右键点击开始按钮(就是Windows标志的那个按钮)。左键点击Windows Powershell(管理员)(A).先检查自己的电脑是否支持承载网络:netsh wlan show drivers如果是否的话,你需要安装相应的驱动。然后键入 netsh wlan set hostednetwork mode=allow ssid=网络名称 key=这里是你设置的密码然后激活这个临时网络:netsh wlan start hostednetwork这时候就可以在其
2021-08-17 13:33:17 1260
原创 机器学习中的数学 ch12:支持向量机分类(Classification with Support Vector Machines)
文章目录在机器学习中,有一种分类问题,这种分类问题只有两个预测结果,是或否,即:f:RD→{0,1}f:\mathbb R^D\rightarrow \{0,1\}f:RD→{0,1}为了计算方便,我们使用0,1来表示两种分类的结果,这种分类问题被称为二元分类(Binary Classification)。本章节就是主要介绍用支持向量机(Support Vector Machine,SVM)来解决这种分类问题。...
2021-07-25 08:25:24 814
原创 机器学习中的数学ch11:基于高斯混合模型的密度估计(Density Estimation with Gaussian Mixture Models)
文章目录高斯混合模型(Gaussian Mixture Model)利用极大似然估计进行参数学习(Parameter Learning via Maximum Likelihood)责任(Responsibilities)更新均值(Updating the Means)更新协方差(Updating the Covariances)更新混合权重(**Updating the Mixture Weights**)实例(Example)期望最大化算法(EM Algorithm)潜变量角度(Latent-Varia
2021-07-05 10:09:14 1692
原创 MML ch 10 主成分分析降维(Dimensionality Reduction with Principal Component Analysis)
文章目录问题设置(Problem Setting)对于一些高维的数据,分析难度大,而且想要对这些数据进行可视化几乎是不可能的,并且想要存储这些数据的代价也是及其昂贵的,所以我们想要找到一种能够将数据的维度降低的方法。这其中,主成分分析法(principal component analysis (PCA))是最常用的方法之一。问题设置(Problem Setting)在PCA中,我们希望能够找到一个一个向量的投影向量x~n\tilde x_nx~n,与原向量尽可能相近。对于一个独立均匀分布的数据集
2021-07-02 12:38:46 455
原创 机器学习中的数学:线性回归Linear Regression
文章目录问题描述(Problem Formulation)参数估计(Parameter Estimation)极大似然估计(Maximum Likelihood Estimation)回归的目的就是找到一个函数fff,将输入的数据x∈Rn\boldsymbol x\in \mathbb R^nx∈Rn映射成f(x)∈Rf(\boldsymbol x)\in \mathbb Rf(x)∈R.数据的观测噪音为:yn=f(xn)+ϵy_n=f(x_n)+\epsilonyn=f(xn)+ϵ,其中ϵ\epsi
2021-06-15 09:12:40 889 1
原创 机器学习中的数学: When Models Meet Data
文章目录Data, Models, and LearningData as VectorsModels as Functions经验风险最小化(Empirical Risk Minimization)假设函数的种类(Hypothesis Class of Functions)代价函数(Loss Function for Training)正则化减小过拟合(Regularization to Reduce Overfitting)Data, Models, and LearningThe title co
2021-05-26 10:51:34 773
原创 机器学习中的数学:(六)连续优化(Continuous Optimization)
文章目录梯度下降法(Optimization Using Gradient Descent)在本节中,主要讨论连续优化的两个主要分支:约束优化(constrained optimization)、无约束优化(unconstrained optimization)。在求解一个线性方程的最优问题的时候,可以对方程进行求导,让后让求导得到的式子赋值为0,接触的结果就是驻点(Stationary points),想要知道这个驻点是极大值还是极小值,需要看在该点的二阶导数的的值的情况。由于五次方及以上的高次方程没
2021-05-14 10:40:52 3465
原创 机器学习中的数学:(五)概率与分布(Probability and Distributions)
文章目录概率空间的构造(Construction of a Probability Space)哲学问题(Philosophical Issues)概率和随机变量(Probability and Random Variables)统计(Statistics)离散概率和随机概率(Discrete and Continuous Probabilities)概率空间的构造(Construction of a Probability Space)哲学问题(Philosophical Issues)这部分是对
2021-05-11 10:17:57 2710
原创 机器学习中的数学:(四)矢量积分(Vector Calculus)
文章目录单变量微分(Differentiation of Univariate Functions)泰勒级数单变量微分(Differentiation of Univariate Functions)定义:差商形式正式定义:割线在极限情况下变成切线多项式导数的推导:df dx=limh→0f(x+h)−f(x)h=limh→0(x+h)n−xnh=limh→0∑i=0n(ni)xn−ihi−xnh.\begin{aligned}\frac{\mathrm{d} f}
2021-04-29 12:23:32 2977
原创 机器学习中的数学:(三)矩阵分解(Matrix Decompositions)
文章目录行列式与迹(Determinant and Trace)行列式(Dterminant)迹(Trace)矩阵分解可以用于压缩矩阵,已经可能少的空间存储一个矩阵行列式与迹(Determinant and Trace)行列式(Dterminant)行列式可以看成将一个方阵映射成一个实数。(只有方阵才有行列式)可以将行列式用于判断一个方阵是否可逆:对于上/下三角矩阵的行列式的值为:det(T)=∏i=1nTii\operatorname{det}(\boldsymbol{T})=\pro
2021-04-26 10:32:53 2025
原创 机器学习中的数学:(一)线性代数
研究生的方向就是人工智能,早就听说人工智能对于数学的要求高,所以为了不让数学变成自己的天花板,所以利用本科的最后一些时间学习人工智能中的数学。
2021-04-21 10:22:36 887 1
原创 算法➡数学问题
文章目录最大公约数与最小公倍数最大公约数最大公约数与最小公倍数最大公约数可以用于分数运算的时候的化简,最小公倍数用于最大公约数最大公约数可以利用欧几里得算法(辗转相除法)进行求解。设a、b均为正整数,则gcd(a,b) = gcd(b, a%b)有了递推式之后,还需要一个递归边界,因为0与任意数字a的最大公约数为a,所以可以利用这个作为递归的出口。在这里需要a>b所以应该在先判断a和b的大小。int gcd1(int a, int b){ if(a < b){ int
2021-03-19 13:11:37 767
原创 Math Learning
文章目录牛顿迭代法牛顿迭代法牛顿迭代法可以用于求方程的近似解,需要:函数在整个定义域内最好是二阶可导的起始点对求根计算影响重大,可以增加一些别的判断手段进行试错其方法描述为,在函数上任取一点A取该点切线与x轴的交点B,然后经这条交点B做垂线与函数相交于C点,然后以该点作为A点重复上述操作直到满足精度要求。迭代公式为:xn+1=xn−f(xn)f′(xn+1)x_{n+1} = x_{n} - \frac{f(x_n)}{f'(x_{n+1})}xn+1=xn−f′(xn+1)f(xn
2021-03-10 08:00:41 183
原创 《算法笔记》数据结构(图)
文章目录图的存储邻接矩阵邻接表图的遍历深度优先广度优先图的存储图有两种存储方式:邻接表和邻接矩阵。邻接矩阵需要的空间较大,一般适用于顶点数目不超过1000的情况邻接矩阵相当于一个离散的平面直角坐标系,每一个坐标代表一对节点的相互之间的关系,当两节点不直接相连的时候,这个坐标上的值可以设为0、-1或者是无穷大。否则可以在该点上赋值为这两点之间的权值。邻接表将这些节点之间的关系保存在几个链表中,每一个链表都是在描述一个节点的连接情况。可以将这些数据保存在向量中。const int N = 10;/
2021-03-07 16:48:19 115
原创 《算法笔记》第四章:算法初步(算法思想)
文章目录排序算法sort 函数Learn to learn1.Whenever I tackle a new subject, one of my first thoughts is what kind of structure am I trying to build. What would be the input situations that should cause me to remember this knowledge? How do I need to manipulate it,
2021-02-27 08:14:48 669
原创 《算法笔记》数据结构部分(STL&链表&树)
文章目录栈队列链表链表的概念链表节点的空间分配malloc函数new运算符(推荐使用)链表的基本操作创建链表(运用for语句实现)静态链表搜索深度优先搜索(DFS)广度优先二叉树二叉树的存储和操作二叉树的遍历树的静态实现(非二叉树)树的遍历二叉查找树平衡二叉树栈#include <stack>using namespace std;//定义一个栈stack <typename> name;//stack函数实例stack.push(x);//将元素x加入到栈中st
2021-02-25 10:46:43 775
原创 B1016 部分A+B
//B1016#include <stdio.h>#include <string.h>#include<math.h>int Get(char A[], char D) { int n = 0;//统计D出现的次数 int result = 0;//最终结果 for (unsigned int i = 0; i <= strlen(A); ++i) { if (A[i] == D) n++; } .
2021-01-21 19:03:45 209 2
原创 B1026 程序运行时间
#include<stdio.h>#include<math.h>int main(void){ int h,m;//定义时间 int s; int pre,aft; double interval; if(scanf("%d%d",&aft,&pre) == 0)return -1; interval = (pre - aft)/100.00;//如何保证运算之后的精度?有没有办法直接移动小数点 .
2021-01-21 19:01:33 88
原创 A1002 A+B for Polynomials
//#1 注释是自己的做题的思考过程,跳过即可#2应该是更好的方法/*算法思想:以指数作为数组下标×因为考虑到题目并没有明确指出指数为整数,所以不能用它作为数组的下标,但是可以尝试一下(但是实际上是都是整数)在思考思路的时候,还要将对应的实现方式想一想,是否可行果然,最后的结果是超时的,本次算法有三个循环,每一个循环都要进行1000次,这样看还是很可能会超时的。所以应该对算法进行一些优化×需要注意的问题:浮点型在比较的时候可能会因为精度的原因出现偏差,所以应该用一个极小的数字来进行修正发现.
2021-01-21 17:28:48 112
原创 Java学习笔记
Java学习学习廖雪峰博客的笔记https://www.liaoxuefeng.com/wiki/1252599548343744文章目录Java学习基本运算符逻辑运算符位运算符交换两变量的值三目运算符流程控制输入条件判断语句判等语句”==“:switch语句for 语句数组操作数组的遍历数组的排序访问多维数组命令行参数面对对象编程面对对象基础类方法:private 方法构造方法方法重载(Overload)(同名但拥有不同的参数类型的方法)继承继承树protected(仅能被继承树中的成员所访问的变量)
2021-01-09 21:32:23 73
原创 《Computer Systems: A Programmer Perspective 3rd ed》
系列文章目录提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章 Python 机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录系列文章目录前言一、pandas是什么?二、使用步骤1.引入库2.读入数据总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例
2021-01-09 20:45:14 869
原创 Wireshark Lab: HTTP
Wireshark Lab: HTTP提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章 Python 机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录Wireshark Lab: HTTP预备知识HTTP的非坚持型连接HTTP的坚持型连接坚持型HTTP连接的断开HTTP的报文格式请求报文应答报文总结预备知识坚持型连接&非坚持型连接:是否在同一个TCP连接上完成所有的请求/应答报文的传输?Y:坚持型
2021-01-03 08:16:33 1505
原创 Wireshark Lab:Getting Started
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、pandas是什么?二、使用步骤1.引入库2.读入数据总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例可供参考一、pandas是什么?示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。二、使用步骤1.引入库代码
2021-01-02 16:46:57 910 4
原创 《算法笔记》第一部分C/C++语言基础
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、pandas是什么?二、使用步骤1.引入库2.读入数据总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例可供参考一、pandas是什么?示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。二、使用步骤1.引入库代码
2020-12-31 21:30:57 925 4
原创 学习目标/计划
学习目标:1.计算机网络实验——《计算机网络自顶向下7e》课后实验2.计算机组成原理的网课学习(CS61C)3.《数据结构》邓俊辉网课+课后习题+课本4.《算法笔记》+上机实操5.C语言学习《The C Programming Language 2e》6.**专业数学《Mathematics for Computer Science》7.**补充:学习内容:提示:这里可以添加要学的内容例如:1、 搭建 Java 开发环境2、 掌握 Java 基本语法3、 掌握条件语句4、
2020-12-31 15:13:26 116 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人