SKUA-GOCAD入门教程-第一节

简介

      GOCAD软件是法国Nancy理工大学开发的主要应用与地质领城的三维可视化建模软件,在地质工程、石油、地球物理勘探、矿产开发、水利水电工程、公路工程中有广泛的应用。GOCAD软件具有强大的三维建模、可视化、地质解译和分析的功能。它既可以进行表面建模,又可以进行实体建模;既可以设计空间几何对象,也可以表现空间属性分布。并且,该软件的空间分析功能强大,信息表现方式灵活多样。

       自1990年诞生后,该软件得到了国外的许多石油公司和地球物理公司的支持,取得了飞速的发展。从最初的简单构造建模,发展到今天复杂构造建模、复杂三维模型网格生成、岩土体物理属性模型、岩相模型等,以GOCAD为代表的先进地质建模软件大大提高了地质建模的效率和精度,满足了对复杂地质区域的建模要求。

       无论多么复杂的地质体,在GOCAD中,归纳起来都可以用点线、面、体笋四种类型的数据对象来进行描述。GOCAD可以比较容易地处理复杂构造,包括断层、相交断层、盐丘等。GOCAD三维建模的过程是信息逐步丰富的过程,也就是需要根据少量信息,推断到整个三维空间,因此必须使用先进的插值方法和技术,来确保三维建模的快速、简捷、准确。

        GOCAD的创始人Mallet教授,研制了一套离散平滑插值(DSI)的专利技术,该技术已被工业界广泛承认,并成熟应用于GOCAD复杂构造建模(如逆掩断层、盐丘等)和速度建模过程中。该技术的核心思想是: 

(1)保证相邻单元之间的属性彼此相似,平滑过渡。

(2)在空间插值过程中采用模糊控制。

       GOCAD软件研发中除采用Mallet 教授提出的离散光滑插值技术(DSI),还采用了适应能力很强的三角剖分和四面体剖分技术,并开发了地质统计学的功能。地质统计学方法是三维确定性建模中必不可少的工具,GOCAD软件中地质统计学方法有普通克里金、带趋势的克里金坝叶斯克里金块克里金、具有外部漂移克里金、同位协同克里会、指示克里金等。随机建模也是三维随机建模的必要技术,GOCAD软件中随机建模上指技术有:截断高斯模拟、布尔模拟、马尔柯夫模拟、序贯高斯模拟、非条件序贯高斯模拟、同位协同克立金序贯高斯模拟、块克里金序贯高斯模拟、序贯指示模拟、模拟退火、云图转换等。

       GOCAD简化了和自动化建模技术,使地质物理学家、地质学家、石油工程师受益。GOCAD将地质物理学、盆地建模、储层建模和流量模拟结合成一个统一的工作流程。SKUA-GOCAD的基于地质驱动的建模方法还消除了许多重复任务,例如为高度错位的模型构建多个断层表面。

       GOCAD依赖于Subsurface Knowledge Unified Approach(SKUA™)技术。SKUA技术通过基于新技术的全新地下表示方法在储层建模方面取得了重大进步,即UVT Transform™。SKUA技术使用真正的3D方法,将所有地下离散模型统一起来。这种方法包含了对储层体积的本地完整3D描述,消除了基于支柱建模和作为单独表面的地层建模的需求。以前的行业3D建模方法包括一系列2D操作(表面建模和然后支柱建模)。真正的3D建模也缓解了传统支柱和挤压方法中发生的模型复杂性的严重限制,并消除了典型的2-1/2D系统的误差。

     
 


 


 

在本章中,我们将深入探讨基于块匹配的全景图像拼接技术,这是一种广泛应用于计算机视觉和图像处理领域的技术。在深度学习和机器学习的背景下,这种方法的实现与整合显得尤为重要,因为它们能够提升图像处理的效率和精度。下面,我们将会详细阐述相关知识点。 我们要了解什么是全景图像拼接。全景图像拼接是一种将多张有限视角的图像合并成一个宽视角或全方位视角图像的技术,常用于虚拟现实、地图制作、监控系统等领域。通过拼接,我们可以获得更广阔的视野,捕捉到单个图像无法覆盖的细节。 块匹配是全景图像拼接中的核心步骤,其目的是寻找两张图片中对应区域的最佳匹配。它通常包括以下几个关键过程: 1. **图像预处理**:图像的预处理包括灰度化、直方图均衡化、降噪等操作,以提高图像质量,使匹配更加准确。 2. **特征提取**:在每张图像上选择特定区域(块)并计算其特征,如灰度共生矩阵、SIFT(尺度不变特征变换)、SURF(加速稳健特征)等,这些特征应具备旋转、缩放和光照不变性。 3. **块匹配**:对于每一张图像的每个块,计算与另一张图像所有块之间的相似度,如欧氏距离、归一化互信息等。找到最相似的块作为匹配对。 4. **几何变换估计**:根据匹配对确定对应的几何关系,例如仿射变换、透视变换等,以描述两张图像之间的相对位置。 5. **图像融合**:利用估计的几何变换,对图像进行融合,消除重叠区域的不一致性和缝隙,生成全景图像。 在MATLAB环境中实现这一过程,可以利用其强大的图像处理工具箱,包括图像读取、处理、特征检测和匹配、几何变换等功能。此外,MATLAB还支持编程和脚本,方便算法的调试和优化。 深度学习和机器学习在此处的角色主要是改进匹配过程和图像融合。例如,通过训练神经网络模型,可以学习到更具鲁棒性的特征表示,增强匹配的准确性。同时,深度学习方法也可以用于像素级别的图像融合,减少拼接的失真和不连续性。 在实际应用中,我们需要注意一些挑战,比如光照变化、遮挡、动态物体等,这些因素可能会影响匹配效果。因此,往往需要结合其他辅助技术,如多视图几何、稀疏重建等,来提高拼接的稳定性和质量。 基于块匹配的全景图像拼接是通过匹配和融合多张图像来创建全景视图的过程。在MATLAB中实现这一技术,可以结合深度学习和机器学习的先进方法,提升匹配精度和图像融合质量。通过对压缩包中的代码和数据进行学习,你可以更深入地理解这一技术,并应用于实际项目中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

江洋大葱

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值