数塔问题采用动态规划从塔底到塔顶递推
数塔
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 26150 Accepted Submission(s): 15766
Problem Description
在讲述DP算法的时候,一个经典的例子就是数塔问题,它是这样描述的:
有如下所示的数塔,要求从顶层走到底层,若每一步只能走到相邻的结点,则经过的结点的数字之和最大是多少?
已经告诉你了,这是个DP的题目,你能AC吗?
有如下所示的数塔,要求从顶层走到底层,若每一步只能走到相邻的结点,则经过的结点的数字之和最大是多少?
已经告诉你了,这是个DP的题目,你能AC吗?
Input
输入数据首先包括一个整数C,表示测试实例的个数,每个测试实例的第一行是一个整数N(1 <= N <= 100),表示数塔的高度,接下来用N行数字表示数塔,其中第i行有个i个整数,且所有的整数均在区间[0,99]内。
Output
对于每个测试实例,输出可能得到的最大和,每个实例的输出占一行。
Sample Input
1 5 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5
Sample Output
30
#include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int a[120][120];
int dp[120][120];
int main()
{
int t;
while(scanf("%d",&t)!=EOF)
{
while(t--)
{
int n;
scanf("%d",&n);
for(int i=1;i<=n;i++)
for(int j=1;j<=i;j++)
scanf("%d",&a[i][j]);
memset(dp,0,sizeof(dp));
for(int i=1;i<=n;i++)
dp[n][i]=a[n][i];
for(int i=n-1;i>0;i--)
for(int j=1;j<=i;j++)
dp[i][j]=a[i][j]+max(dp[i+1][j],dp[i+1][j+1]);
printf("%d\n",dp[1][1]);
}
}
return 0;
}
免费馅饼
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 30097 Accepted Submission(s): 10248
Problem Description
都说天上不会掉馅饼,但有一天gameboy正走在回家的小径上,忽然天上掉下大把大把的馅饼。说来gameboy的人品实在是太好了,这馅饼别处都不掉,就掉落在他身旁的10米范围内。馅饼如果掉在了地上当然就不能吃了,所以gameboy马上卸下身上的背包去接。但由于小径两侧都不能站人,所以他只能在小径上接。由于gameboy平时老呆在房间里玩游戏,虽然在游戏中是个身手敏捷的高手,但在现实中运动神经特别迟钝,每秒种只有在移动不超过一米的范围内接住坠落的馅饼。现在给这条小径如图标上坐标:
为了使问题简化,假设在接下来的一段时间里,馅饼都掉落在0-10这11个位置。开始时gameboy站在5这个位置,因此在第一秒,他只能接到4,5,6这三个位置中其中一个位置上的馅饼。问gameboy最多可能接到多少个馅饼?(假设他的背包可以容纳无穷多个馅饼)
为了使问题简化,假设在接下来的一段时间里,馅饼都掉落在0-10这11个位置。开始时gameboy站在5这个位置,因此在第一秒,他只能接到4,5,6这三个位置中其中一个位置上的馅饼。问gameboy最多可能接到多少个馅饼?(假设他的背包可以容纳无穷多个馅饼)
Input
输入数据有多组。每组数据的第一行为以正整数n(0<n<100000),表示有n个馅饼掉在这条小径上。在结下来的n行中,每行有两个整数x,T(0<T<100000),表示在第T秒有一个馅饼掉在x点上。同一秒钟在同一点上可能掉下多个馅饼。n=0时输入结束。
Output
每一组输入数据对应一行输出。输出一个整数m,表示gameboy最多可能接到m个馅饼。
提示:本题的输入数据量比较大,建议用scanf读入,用cin可能会超时。
提示:本题的输入数据量比较大,建议用scanf读入,用cin可能会超时。
Sample Input
6 5 1 4 1 6 1 7 2 7 2 8 3 0
Sample Output
4
数塔的变形,然后时间是塔的层数,思路跟上面题差不多
#include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int a[20][100005];
int dp[20][100005];
int main()
{
int n;
while(scanf("%d",&n)!=EOF&&n)
{
int x,y;
int k=0;
memset(a,0,sizeof(a));
memset(dp,0,sizeof(dp));
for(int i=1;i<=n;i++)
{
scanf("%d%d",&x,&y);
a[x+1][y]++;
if(y>k) k=y;
}
for(int i=1;i<12;i++)
dp[i][k]=a[i][k];
for(int i=k-1;i>=0;i--)
for(int j=1;j<12;j++)
dp[j][i]=a[j][i]+max(dp[j][i+1],max(dp[j-1][i+1],dp[j+1][i+1]));
/* int ans=0;
for(int i=0;i<12;i++)
if(dp[i][0]>ans)
ans=dp[i][0];*/
printf("%d\n",dp[6][0]);//在这里坑死了,直接找最大的ans输出了,应该是输出5号位置的。
}
return 0;
}