每日一题——有效括号序列

题目描述

给出一个仅包含字符 '(', ')', '{', '}', '[', ']' 的字符串,判断该字符串是否是一个合法的括号序列。

  • 括号必须以正确的顺序关闭。即 "()""()[]{}" 都是合法的括号序列,而 "(]""([)]" 是不合法的。

数据范围:

  • 字符串长度 0 ≤ n ≤ 10000 0 \leq n \leq 10000 0n10000

复杂度要求:

  • 时间复杂度: O ( n ) O(n) O(n)
  • 空间复杂度: O ( n ) O(n) O(n)

示例

示例 1:

输入:

"["

返回值:

false

示例 2:

输入:

"[]"

返回值:

true

题解

在这道题目中,我们可以使用栈来解决。具体思路如下:

  1. 栈的应用:

    • 使用栈来模拟括号的匹配。每次遇到左括号 '(', '{', '[' 时,将其压入栈中。遇到右括号 ')', '}', ']' 时,判断栈顶是否是对应的左括号。如果是,则弹出栈顶元素,如果不是,则说明序列不合法。
  2. 栈的空检查:

    • 如果在检查过程中栈为空且仍然遇到右括号,则说明没有匹配的左括号,返回 false
  3. 遍历字符串:

    • 遍历输入字符串,如果最后栈为空,则说明所有的括号都正确配对,返回 true。否则,返回 false

代码实现

/**
 * 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
 *
 *
 * @param s string字符串
 * @return bool布尔型
 */
#define MAX_SIZE 10000  // 假设栈最大容量

// 用一个栈存储括号
char stack[MAX_SIZE];
int top = -1; // 栈顶指针,初始化时栈为空

// 将字符s1压入栈
void push(char s1) {
    stack[++top] = s1;
}

// 从栈中弹出一个字符
char pop() {
    return stack[top--];
}

// 判断栈是否为空
bool isEmpty() {
    return top == -1;
}

// 判断字符串是否是有效的括号序列
bool isValid(char* s) {
    // 遍历字符串中的每个字符
    for (int i = 0; s[i] != '\0'; i++) {
        // 如果栈为空且当前字符是右括号,则返回false
        if (isEmpty()) {
            if (s[i] == '}' || s[i] == ']' || s[i] == ')') {
                return false;
            } else {
                push(s[i]); // 否则将当前左括号压入栈
            }
        } else { 
            // 如果栈非空并且当前字符是右括号
            if (s[i] == '}' || s[i] == ']' || s[i] == ')') {
                char temp = pop(); // 弹出栈顶元素
                // 检查栈顶元素是否与当前右括号匹配
                if ((s[i] == '}' && temp != '{') || 
                    (s[i] == ']' && temp != '[') || 
                    (s[i] == ')' && temp != '(')) {
                    return false; // 不匹配则返回false
                }
            } else {
                push(s[i]); // 否则将当前左括号压入栈
            }
        }
    }
    // 遍历完字符串后,栈应该为空
    return isEmpty();
}

代码解析

1. 定义栈和栈操作

#define MAX_SIZE 10000  // 假设栈最大容量
char stack[MAX_SIZE];  // 用于存储括号
int top = -1; // 栈顶指针,初始化时栈为空
  • 定义了一个大小为 MAX_SIZE 的栈数组 stack,用于存储括号。
  • 栈顶指针 top 初始化为 -1,表示栈为空。

2. 栈的基本操作

  • push: 将一个字符压入栈。
void push(char s1) {
    stack[++top] = s1;  // 将字符压入栈
}
  • pop: 从栈中弹出一个字符。
char pop() {
    return stack[top--];  // 返回栈顶元素并将栈顶指针下移
}
  • isEmpty: 判断栈是否为空。
bool isEmpty() {
    return top == -1;  // 如果栈顶指针为-1,表示栈为空
}

3. 主函数 isValid

isValid 函数遍历字符串,对于每个字符,判断是左括号还是右括号,并进行相应的栈操作:

  • 左括号处理: 遇到左括号时直接压入栈。
  • 右括号处理: 遇到右括号时,弹出栈顶元素并进行匹配。如果匹配失败,则返回 false
  • 边界条件: 在遍历完成后,如果栈为空,则说明括号序列合法,否则不合法。

4. 返回值

  • 如果栈为空,说明所有括号都匹配,返回 true;否则返回 false

时间和空间复杂度分析

  • 时间复杂度: 每个字符仅遍历一次,栈操作(压栈和弹栈)都是常数时间操作,因此总的时间复杂度是 O ( n ) O(n) O(n),其中 n n n 是字符串的长度。

  • 空间复杂度: 由于需要使用一个栈来存储括号,栈的最大容量为字符串长度 n n n,因此空间复杂度是 O ( n ) O(n) O(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

tt555555555555

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值