结合Dify+DeepSeek+Ollama搭建本地知识库记录

部署条件

1、硬件

在这里插入图片描述
【注意:不同的大模型对显存有对应的要求】

2、系统

在这里插入图片描述
【注意:当前下载的docker-desktop安装对windows版本有要求,可通过升级Windows版本解决】

一、安装ollama

1、下载安裝

地址:https://ollama.com/,直接安裝即可

2、配置

为了能在局域网中访问ollama的大模型API,在系统变量中,添加:
OLLAMA_HOST:0.0.0.0
OLLAMA_ORIGINS:*

在这里插入图片描述

二、下载deepseek预训练模型

1、获取适合的大模型下载指令

访问:https://ollama.com/library/deepseek-r1
在这里插入图片描述
查找当前显存可支持的大模型参数规模(这里的 “B” 代表 “Billion”,即“十亿”)

2、复制命令并下载

获取命令并复制,如deepseek-r1 7b的预训练模型下载指令:ollama run deepseek-r1:7b
打开cmd,输入ollama -v,确认已安装,直接执行ollama run deepseek-r1:7b即可
下载完毕后,会出现对话模式,可输入对话测试大模型运行效果

三、下载并安装docker-desktop

1、下载地址

https://www.docker.com/products/docker-desktop

### DifyDeepSeek 在企业知识库中的解决方案实现方法 #### 1. 技术架构概述 Dify 是一种专注于企业知识管理的工具,能够帮助企业自动处理和维护内部数据源。其核心功能在于自动化地更新、分类、存储以及高效检索知识[^1]。而 DeepSeek 则是一种大语言模型 (LLM),擅长于复杂的信息分析与推理能力,在提供精准答案的同时还展示了详细的思考过程[^3]。 两者的结合可以为企业构建一个强大且灵活的知识管理系统。具体来说,Dify 提供了一个结构化的框架来管理和组织来自不同渠道的数据;与此同时,DeepSeek 增强了系统的智能化水平,使得该系统不仅限于简单的信息查询,还可以完成更深层次的任务如逻辑推导或趋势预测。 #### 2. 集成方式说明 为了成功实施这一联合方案,通常需要按照如下方式进行配置: - **安装并初始化 Ollama**: 这是一个轻量级的服务端程序,用于托管各种大型预训练模型(LPMs),其中包括但不限于 DeepSeek 家族成员。通过设置 API 接口参数,可以让其他应用程序轻松调用这些 AI 功能。 ```bash docker run --rm -p 11434:11434 ollama/ollama serve ``` - **引入 DeepSeek 至项目环境**: 下载所需版本的 DeepSeek 模型文件至本地服务器上,并确保它们被正确加载到运行时环境中以便随时响应请求。 ```python from deepseek import generate_text result = generate_text(prompt="请解释量子计算基本原理", max_length=500) print(result['generated_text']) ``` - **连接 Dify 平台服务**: 注册账户之后登录后台管理系统界面,创建新的应用实例并将上述提到的人工智能组件绑定进去形成闭环生态体系。此外还需要定义好各个字段之间的映射关系以保障整体流程顺畅无阻塞现象发生。 #### 3. 应用场景举例 当这套完整的基础设施搭建完毕以后,就可以投入到具体的业务环节当中去了。比如在一个跨国制药集团里边,科研人员每天都要面对海量的专业文献资料,这时候如果借助我们所描述的技术栈,则可以从以下几个方面带来显著改善效果: - 自动摘要生成:快速提炼每篇论文的核心要点; - 关键词提取标注:帮助建立统一标准术语表便于后续统计分析工作开展; - 类似案例推荐引擎:基于历史积累发现潜在关联线索从而加速新药研发进度等等[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值