Ollama安装与配置完全指南
ollama 启动并运行 Llama 2、Mistral、Gemma 和其他大型语言模型。 项目地址: https://gitcode.com/gh_mirrors/oll/ollama
项目基础介绍
Ollama 是一个轻量级且可扩展的框架,专为在本地机器上构建和运行大型语言模型设计。它支持多种预建模델,并提供了一个简单的API来创建、运行及管理这些模型。项目以Go语言为主要开发语言,适配于广泛的模型应用需求,包括但不限于聊天机器人、文本总结、代码辅助等场景。
关键技术和框架
- 核心库: 使用Go语言实现,强调高效和低资源占用。
- 模型支持: 支持GGUF格式的模型文件导入,兼容PyTorch和Safetensors导出的模型通过转换使用。
- 多平台兼容: 提供跨平台支持,适用于macOS、Linux以及Windows(预览版)。
- REST API服务: 内置REST接口,方便远程调用模型服务。
- 定制化能力: 用户可以通过Modelfile自定义模型行为,如设置温度参数,添加系统消息等。
准备工作与详细安装步骤
系统要求
确保你的计算机满足以下最低要求:
- 至少8GB RAM(对于7B模型)
- 推荐16GB RAM或更高以运行更大的模型(如13B、33B)
步骤一:环境准备
步骤二:克隆项目
打开终端或命令提示符,执行以下命令来克隆Ollama项目到本地:
git clone https://github.com/ollama/ollama.git
cd ollama
步骤三:安装依赖
确保Go环境已正确配置,并使用go mod
处理项目依赖:
go mod download
步骤四:编译并运行
- 编译Ollama服务端程序:
go build .
- 运行Ollama服务器:
./ollama serve
步骤五:快速启动模型
例如,要运行Llama 3.1模型,首先需要通过Ollama的命令下载模型,然后运行它:
ollama pull llama3-1
ollama run llama3-1
配置模型和高级使用
-
自定义模型:创建一个
Modelfile
,指定模型路径和参数,例如设置不同的温度值。FROM llama3-1 PARAMETER temperature 0.7
使用
ollama create 自定义模型名 -f Modelfile
创建模型,然后用ollama run 自定义模型名
运行。 -
通过REST API使用模型:Ollama提供了API接口,你可以通过HTTP请求与模型交互,具体方法参考Ollama项目的API文档。
故障排查与社区资源
- 如果遇到问题,查阅项目的
README.md
文档、SECURITY.md
以及官方提供的帮助文档。 - 加入Ollama的Discord社区,与其他开发者交流心得。
至此,您已经成功安装并配置了Ollama,可以开始探索大型语言模型的世界了。记得根据自己的应用场景调整配置,享受模型带来的便捷和创造力!
ollama 启动并运行 Llama 2、Mistral、Gemma 和其他大型语言模型。 项目地址: https://gitcode.com/gh_mirrors/oll/ollama