斜率优化

版权声明:呐,转载请交稿费QAQ[不许转载!] https://blog.csdn.net/zxn0803/article/details/54628840

1.北京冬令营的一个无聊题目
题意不说了,简略概括其实就是:
给你个数组a,求个前缀和数组之后,有个dp转移,叫做:
f[i]=min{f[j]+(sumisumj)2} 
让你在O(nlogn)的时间之内算出这个数组。
首先把这个东西展开:
f[i]=min{f[j]2sumjsumi+sum2j}+sum2i 
感觉瞬间就不会做了。
把只与j相关的记作Yj.
f[i]=min{Yj2sumjsumi}+sum2i 
然后因为2sumi是定值,我们可以把它记作k:
f[i]=min{Yjksumj}+sum2i 
我们来想想初中学的东西,叫做y=kx+b 
那么b=ykx .
已知y,k,x就可以求b(截距).
sumj记作Xj ,那么就是:
f[i]=min{Yjkxj}+sum2i 
每个j对应的能得到的dp值,等价于在(Xj,Yj)上画一条斜率为k的直线,它的截距值(有正有负)。
那我们要找截距最小的,那就把这条直线从下往上平移,平移到这个直线切到某个点为止。
那么显而易见的是,这个点在凸包上。
现在可以每次在凸包上二分。
如果对于一个点,它的解比左边右边都好,那么就选这个点,结束。否则跑到相对应的位置。
但是注意到这个题斜率是单调的,即我们每次在凸包上获取到的最优解横坐标一定都是单调递增的,那么可以直接用单调队列来维护这个凸壳,一旦获取答案的时候不是最优解就直接把它弹掉就行了。

阅读更多
换一批

没有更多推荐了,返回首页