二分图(三)——KM算法

写完这一章,大概二分图的匹配问题也该完结了吧。
其实我自己现在对KM算法也是刚刚理解,有理解不到位之处还请大家指出。
KM算法:求在一个二分图的完备匹配中的最大权值匹配的算法。(下文简称为最佳完备匹配)
似乎跟匈牙利算法有点相似,
所以我们要引入一个基于匈牙利算法的一种算法,叫做KM算法。
步骤如下:
首先用邻接矩阵存储二分图,注意:如果只想求最大权值匹配而不要求是完备匹配的话,请把各个不相连的边的权值设置为0
之后进行下述步骤:
1.运用贪心算法初始化标杆。
2.运用匈牙利算法找到完备匹配。
3.如果找不到,则通过修改标杆,增加一些边。
4.重复2,3的步骤,找到完备匹配时可结束。
不得不说整个博文时间跨度到了一天……
继续写……
标杆分为X标杆和Y标杆,一般我们把比较少的点放在X标杆一侧。
这样进行算法:
首先要初始化两个标杆分别为X标杆和Y标杆,X标杆初始化为与之相连的最大边权,Y标杆初始化为0,且直接加入拥有最大边权的边。如果发现此时的匹配就是完备匹配,那么直接退出,否则进行标杆的更改。从第一个节点开始扫描,如果有合法的增广路,那么将其反选,扩充路径,如果该节点没有合法的增广路,那么则将增广路上的所有的X标杆上的点加入点集S,将Y标杆上的所有点加入点集T,从S和不在T集合中的点里面,计算d=min{L(x)+L(y)-w(x,y)};计算后,将在S点集内的x的顶标减d,在T的y的顶标加d。并将目前没有加入二分图的权值和等于顶标和的边作为未匹配边加入到二分图中,然后再在该节点寻找增广路,如果还是没有,则再次通过更改标杆来增加边,直到有增广路出现为止。之后重复寻找增广路的步骤以及更改标杆的步骤,如果出现了完备匹配,那么直接退出。
我认为:求d的过程是把xy的顶标和及其权值相差最小的边加入到二分图中,而修改顶标的过程是使得其顶标之和等于新增入的边权,并使得之前选择的那些边仍然存在(即其顶标和仍等于权值和)。
看得有点绕?
我们来看一下强行手工模拟:
有邻接矩阵如下:
x1 x2 x3 x4 x5
y1 7 3 14 19 23
y2 8 10 15 18 20
y3 6 8 12 16 19
y4 4 9 13 20 25
y5 2 7 12 10 15
非常完美的一个邻接矩阵,其中斜体为边权最大值。下面我们按照上面的晕乎乎的步骤来进行模拟吧。
初始化标杆使X标杆的值为斜体字的值。
KM算法1
连接每条边并且使得x1和y3匹配,然后遍历x2,发现x2找不到合法增广路。
KM算法2

  • 4
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
KM算法,全称Kuhn-Munkres算法,是一种用于求解二分图的最佳匹配的算法。它可以找到一个匹配,使得两个集合内的所有顶点能够一一匹配,并且获得的权值最大或最小。KM算法在求解带权二分图匹配时,融合了匈牙利算法的思想。算法的步骤如下: 1. 初始化:将两个集合内的顶点分别标记为未被匹配状态。 2. 根据特定的规则,遍历第一个集合内的顶点。 3. 对于每个选中的顶点,遍历第二个集合内的顶点,找到与其相连的较优边。较优边的选择可以根据具体情况而定,可以是较大的权值或者较小的权值。 4. 如果找到了满足条件的边,判断该边对应的第二个顶点是否已经被匹配。如果该顶点还未被匹配,则直接将其与第一个顶点进行匹配。 5. 如果该顶点已经被匹配,但是与其匹配的顶点还可以找到其他的可匹配顶点,则将该顶点重新匹配给第一个顶点。 6. 循环执行步骤2-5,直到无法找到满足条件的边。 通过这样的循环匹配,KM算法能够找到二分图的最佳匹配。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [二分图的完全匹配---KM算法](https://blog.csdn.net/li13168690086/article/details/81557890)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值